離岸風場極限波高研析-以新竹外海為例

- 張中宇 中興工程顧問社 助理工程師
- 王金山 中興工程顧問社 副研究員
- 王天佑 中興工程顧問社 資深研究員

離岸風機設置 須考量風、浪、流等海上環境因素

近年來由於綠色能源意識漸增,政府為了鼓勵民間業者共同參與離岸風力 發電之建設,遂於民國 101 年 7 月 3 日公告實施「風力發電離岸系統示範獎勵辦 法」,以作為帶動離岸風電開發的重要依據。其目標為 109 年底前開發總容量約 300MW 的風場以作為臺灣離岸風力發電指標性的先驅。近期依據遴選和競價兩 階段所評選出各開發風場之容量分別為 3.5GW 和 2GW,預期在 114 年前完成總 裝置容量 5.5GW 的離岸風場。由上述可知,離岸風力發電未來將成為臺灣重點 發展項目並成為極具規模之新興產業。

離岸風力發電機組設置於海上,相較一般陸上結構物,設計時得多考量 風、浪、流等自然環境因素,相關規範中亦明訂離岸結構須考慮環境荷載之影 響。其中,極限波高為環境荷載中一顯著影響因子,其對於離岸結構設計影響 甚鉅,因此本研究擬探討不同函數擬合之分布對於極限波高推估之影響。

離岸結構設計 4 種極限狀態分析

■海氣象研究

在進行離岸結構設計時,一般考量4種極限分析狀況,分別為:最大極限狀態(Ultimate Limit State)、疲勞極限狀態(Fatigue Limit State)、意外極限狀態 (Accidental Limit State)和服務性極限狀態(Service Limit State),簡單說明如下:

- ▶ 最大極限狀態(Ultimate Limit State, ULS):結構物所能承受之最大荷載。
- ▶ 疲勞極限狀態 (Fatigue Limit State, FLS): 結構物因動態荷載所產生的破壞情形。
- 意外極限狀態(Accidental Limit State, ALS):結構物承受偶然性荷載後的 最大承載力或是意外事件發生後,受損結構物的承載力。
- **服務性極限狀態(Service Limit State, SLS)**:結構物能夠正常運作下的狀態。

同時規範 IEC61400-3 中亦規定須考量風力發電機組可能遭遇到之各種不同 的情形,需依循前述四個狀態,考量多種荷載組合進行分析,且結構模型需能 夠符合每一荷載組合中訂定的各項荷載條件。表一取自規範 DNV-OS-J101,為 最大極限狀態下各項自然環境條件的荷載組合,包含設計時需考慮特定回歸週 期之風、浪、流、冰以及水位,欲得到各項回歸值,需將長期的觀測資料納入 統計模式中計算以求得,本文將針對波浪部分進行探討。

		Environmental load type and return period to define characteristic value of corresponding load effect					
Limit state	Load combinatio n	Wind	Waves	Current	Ice	Water level	
ULS	1	50 years	5 years	5 years		50 years	
	2	5 years	50 years	5 years		50 years	
	3	5 years	5 years	50 years		50 years	
	4	5 years		5 years	50 years	Mean water level	
	5	50 years		5 years	50 years	Mean water level	

表一 環境荷載組合(取自離岸風機結構設計規範 DNV-OS-J101)

註:目前最新之參照規範應為 DNVGL-ST-0126,為方便說明,方取自舊規範 DNV-OS-J101

由於離岸風機的體積相當龐大,輪轂高度在海面上約百米處,此高度的資料較難取得,通常開發商會在風場內設置海氣象觀測塔(Metmast,如圖一所示),以獲取離岸風場的海氣象資料,諸如海水溫度、密度、鹽度、海流速度、方向、波浪高度以及風速等,但目前由於此類設施在臺灣設置時間僅短短兩三年,資料量稍嫌不足,如能配合附近其他長期監測資料,如中央氣象局的海氣象浮標,便能夠提升資料的完整性,進一步將兩種資料結合,進行回歸分析。

圖一 海氣象觀測塔 (取自上緯新能源網站)

結合氣象局浮標浪高資料 進行樣本分析

■分析方法

一、新竹浮標海氣象資料

本文針對極限浪高進行探討,根據長期的波浪觀測資料進行極值分析,資 料源自於中央氣象局設置於新竹海山漁港外海的浮標,其離岸約3.5公里,觀測 資料包含波浪、風和溫度等,中央氣象局之新竹浮標相關資料如表二和圖二、 圖三所示,選用資料自西元 1997 年至 2017 年共計約 20 年,1997 年至 2004 年 初紀錄頻率為每 2 小時 1 筆資料; 2004 年中至 2017 年紀錄頻率為每小時 1 筆資 料,累積資料總共約有 12 萬筆。

新竹浮標			
設置年份	1997		
位置	位置 24°45'36"N, 120°50'37"E		
水深	24m		
觀測資料	浪高、波向、浪週期、溫度、氣壓與風等相關資料		

表二 新竹浮標基本資料

(取自中央氣象局網站)

圖二 海氣象浮標示意圖 (取自中央氣象局網站)

圖三 新竹浮標位置 (取自中央氣象局網站)

二、分析樣本

臺灣位於西太平洋帶,每年夏秋之際易受颱風侵襲,颱風的到來往往伴隨 強風和豪雨,進而造成極端波浪的產生,因為臺灣時常會有這種自然災害,使 極限浪高和極限風速都比歐洲的經驗高上不少,也因此增加了設計時的困難。

由新竹浮標歷史資料顯示,近 20 年來觀測到較大之波浪高峰值,均與歷史 紀錄中颱風通過之事件息息相關,其中整理出颱風造成之極端浪高值如表三所 示。因此本文使用獨立事件法進行極值分析,利用新竹浮標 20 年間總共 12 萬 多筆浪高資料中設定適當的標準進行計算,同時引用 Peaks-Over-Threshold 法選 擇極值之樣本,浪高的最低門檻值則設定為 3.3 公尺。為確保每個尖峰值的獨立 性,尖峰值間最少間隔 48 小時,兩個尖峰值間的中間數值需在尖峰值的 50%以 下。綜合上述條件,於約 20 年之實測資料中選出 51 組極值樣本進行分析,如 圖四所示。

	颱風 發生時間		最大示性波高(m)
1	蔷蜜	2008年9月28日	12.45
2	梅姬	2016年9月27日	10.02
3	柯羅莎	2007年6月10日	8.94
4	杜鵑	2015年9月28日	8.07
5	蘇迪勒	2015年8月8日	6.79
6	象神	2000年11月1日	6.40
7	謝柏	1998年10月16日	5.87
8	蘇力	2013年7月13日	5.78

表三 颱風引致的極端示性波高

圖四 示性波高分布

三、分析函數和參數推估計算結果

根據過往的研究,因分析之領域和特性不同,分析所使用的函數也不盡相同,因此本研究選定多種不同函數進行計算並比較結果,包含Weibull,Rayleigh,Gamma,Gumbel,Fréchet,Normal,Lognormal等函數,每個函數皆包含機率密度函數(Probability Density Function, PDF)和累積分布函數(Cumulative Distribution Function, CDF),其中機率密度函數為一描述隨機變量的機率分布,而累積分布函數為機率密度函數積分之結果,如表四所示:

函數名稱	機率密度函數	累積分布函數
Weibull	$f(x) = \frac{\alpha}{\beta} \left(\frac{x-\gamma}{\beta}\right)^{\beta-1} e^{-\left(\frac{x-\gamma}{\beta}\right)^{\beta}}$	$F(x) = 1 - e^{-(\frac{x-\gamma}{\beta})^{\beta}}$
Rayleigh	$f(x) = \frac{(x-\gamma)}{\alpha^2} e^{\frac{-(x-\gamma)^2}{2\alpha^2}}$	$F(x) = 1 - e^{\frac{-(x-\gamma)^2}{2\alpha^2}}$
Gamma	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} (x - \gamma)^{k-1} e^{-\frac{x - \gamma}{\beta}}$	$F(x) = \frac{1}{\Gamma(\alpha)} \gamma'(\alpha, \beta(x - \gamma))$
Gumbel	$f(x) = \frac{1}{\alpha} e^{-(\frac{x-\gamma}{\alpha} + e^{-\frac{x-\gamma}{\alpha}})}$	$F(x)=e^{-e^{-(x-\gamma)/\alpha}}$
Fréchet	$f(x) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{-1-\alpha} e^{-(\frac{x}{\beta})^{-\alpha}}$	$F(x) = e^{-(\frac{x}{\beta})^{-\alpha}}$
Normal	$f(x) = \frac{1}{\beta\sqrt{2\pi}}e^{-\frac{(x-\alpha)^2}{2\beta^2}}$	$F(x) = \frac{1}{2} \left[1 + erf(\frac{x - \alpha}{\beta\sqrt{2}}) \right]$
Lognormal	$f(x) = \frac{1}{(x-\gamma)\beta\sqrt{2\pi}}e^{\left(-\frac{\left[\ln(x-\gamma)-\alpha\right]^2}{2\beta^2}\right)}$	$F(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln(x-\gamma) - \alpha}{\beta\sqrt{2}}\right]$

表四 統計模式中所使用之函數

比對發現較大浪高值 皆由颱風造成

經過比對後發現樣本中較大的浪高值皆由颱風造成,在進行模式計算時, 為求得最佳的擬合度,引入具有權重係數的雙函數進行計算,將樣本區分為兩

部分,第一部分為海風造成的波浪,在 51 個樣本中共有 43 次;第二部分為颱 風造成的波浪,在 51 次樣本中共有 8 次,以所占比例之權重係數配合雙函數進 行計算,如下式所示。

 $f(x|\mu, \alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2) = \mu f(x|\alpha_1, \beta_1, \gamma_1) + (1-\mu)f(x|\alpha_2, \beta_2, \gamma_2)$

各函數之參數估計是採用最大概似法(Maximum Likelihood Estimation, MLE),其為統計學中常見的一種用來計算機率模型之參數的方法,即是在參數範圍中,尋找一個值使其機率最大化,並使用一般縮減梯度法(Generalized Reduced Gradient, GRG)作為求解此非線性方程式之演算法,適用於平滑非線性之函數。各密度函數之參數計算結果如表五所示。

	α_1	β_1	γ_1	α_2	β_2	γ_2
Weibull	5.38	2.34	3.30	0.67	1.34	3.30
Rayleigh	3.89	-	3.30	0.56	-	3.30
Gamma	5.16	0.91	3.30	1.71	0.36	3.30
Gumbel	1.59	-	7.05	0.33	-	3.70
Fréchet	4.95	6.88	-	11.91	3.67	-
Normal	8.04	2.19	-	3.91	0.48	-
Lognormal	0.26	-	2.05	0.12	-	1.36

表五 各函數參數之計算結果

統計 20 年間共發生 51 次極值事件,發生頻率為 2.55 次/年。依此頻率配合 累積分布函數計算特定回歸週期之浪高,回歸週期設定 1 年至 100 年,結果顯 示出累積分布函數之趨勢相當一致,僅有微小的差異,而從回歸週期圖中可觀 察到,在小回歸週期時,結果較一致,但隨著回歸週期漸漸加大,浪高值的差 異也更加明顯,如圖五、圖六和表六所示。

圖五 累積分布函數圖

圖六 百年內回歸浪高結果

	Significant wave height (m)				
Return period	1 yr	5yr	10yr	50yr	100yr
Weibull	4.12	7.89	9.48	11.90	12.70
Rayleigh	4.20	7.87	9.77	12.82	13.87
Gamma	4.10	7.73	9.23	11.91	12.92
Gumbel	4.09	7.62	9.02	11.77	12.89
Fréchet	4.07	7.41	8.85	12.53	14.46
Normal	4.19	8.03	9.51	11.63	12.32
Lognormal	4.17	7.76	9.24	11.86	12.86

表六 特定回歸週期之浪高結果

四、適合度檢定與結果之比較

本文使用多種不同函數進行極限波高推算,結果也不盡相同,因此將原始 資料排序機率和各函數之擬合結果作比較,先以均方根誤差(Root Mean Square Error)作為比較依據,探討實測值是否符合各函數分布,均方根誤差可用來計算 預測誤差的大小,以一個值來表現其預測的能力。再利用 Kolmogorov-Smirnov Test 進行適合度檢定(Goodness-of-fit),此種檢驗方式是依據於 Kolmogorov 累 計分布函數,將樣本區分為數個區段,計算理論值和實際值的差異程度,查看 最大誤差值是否小於特定顯著水平下的臨界值,以檢驗各函數是否符合原假設。 各項結果如表七和圖七、圖八所示。

KS Test					
Critical value $\rightarrow 0.19$	Max Dev.	Result			
Weibull	0.031	符合			
Rayleigh	0.123	符合			
Gamma	0.020	符合			
Gumbel	0.022	符合			
Fréchet	0.021	符合			
Normal	0.096	符合			
Lognormal	0.078	符合			

表七 KS 檢定結果

圖七 理論函數值與極值樣本排序機率比較

圖八 理論函數值與極值樣本排序機率之均方根誤差

7種函數推估極限波高 以 Gamma 函數誤差最小

由於均方根誤差值會受到計算樣本值範圍的影響,意即當樣本值越大,此 一誤差值會越大,反之亦然,因此均方根誤差僅能用相對的概念來比較不同函 數間計算結果的差異。各函數與排序機率之誤差結果顯示出 Weibull 函數的誤差 值最小,其值約為 0.03,而 Rayleigh 函數的誤差值最大,其值約為 0.10。

再利用 Kolmogorov-Smirnov Test 測試此樣本是否符合各函數之分布,在顯 著水平 0.05,臨界值為 0.19 之情形下,結果顯示出所有的函數皆不拒絕原假 設,適用於此樣本之統計模型,其中以 Gamma 函數計算出之最大偏差值為最 小,約為 0.02,而 Rayleigh 函數計算出之最大偏差值為最大,約為 0.12。

本研究共使用 7 種不同的函數進行極限波高推估,各函數的擬合情況不同,計算出的波高值也略有差異,在回歸週期 5 年內之各函數計算結果差異不明顯,最大最小之浪高差異小於 1 公尺,回歸週期 5 年以上結果差異漸增,各函數之最大回歸週期 100 年之浪高計算結果最大差異達 2 公尺。綜合比較結果可得知 Rayleigh 函數的差異相對其他函數較明顯,主要是因為在浪高值較低的範圍內誤差較大,但其在回歸週期 10~20 年的擬合程度明顯較其他函數好,如單以誤差結果論,7 個函數中以 Gamma 函數的表現最好。

參考文獻

- 劉浙仁、譚志豪、冀樹勇,「風機下部結構概念設計與成本初估-以臺灣西 北部海域為例」,中興工程季刊,第136期,2017年9月,第3~8頁。
- 2. 譚志豪、冀樹勇,「海氣象資料整合系統之開發與應用」,中興工程季刊, 第138期,2018年3月,第3~10頁。
- 臺灣主要港口附近海域長期波浪統計特性及設計波推算之研究,交通部運 輸研究所,102年2月。
- 4. DNV-OS-J101 Design of Offshore Wind Turbine Structures, May 2014.
- 5. DNVGL-ST-0126 Support structures for wind turbines, April 2016.
- 6. DNVGL-ST-0437 Loads and site conditions for wind turbines, November 2016.
- 7. Mauro Naghettini, Fundamentals of Statistical Hydrology, 2017.