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ABSTRACT 
This paper presents a practical methodology for optimizing pile group 
design of bridge foundation. A code-based method is used to design 
and analyze piled foundation. Then, a mathematical model for 
optimizing the problem by a real genetic algorithm is established with 
the direct total cost of pile foundation as the objective function. The 
global optimal solution (GOS) is first found by the exhaustive 
searching method (ESM). The GOS is a base for verifying the 
performance of different searching methods. The real genetic algorithm 
(RGA) is then proposed to globally search the optimal solution in a 
much little time than ESM. Seven real design cases are used to test the 
performance of RGA. Static penalty method (SPM) and Death penalty 
method (DPM) are used to treat constrained functions in the RGA used 
in the study. The analysis results show that the RGA can obtain the 
solutions within 48-61 minutes which are only about 1/1,000 of the 
time spent by the ESM. The construction costs of those solutions only 
differ from those of the global minimum solutions by 1.62-2.0% in 
average, and the minimum cost one of the solutions is the same as the 
global minimum solution. Thus, the proposed optimization 
methodology is time-efficient and technically practicable to be used in 
daily engineering works. 
 
INTRODUCTION 
 
Before the global financial crisis of 2008, the prices of oil and 
construction materials amazingly inflated up from 2007 to the middle 
of 2008. This makes people really realize that the resource of earth is 
rather limited. For sustainable development on earth, people have to 
cherish the use of earth resource. Based on the concept, civil engineers 
should optimize their designs of infrastructures as saving as possible so 
that the use of concrete and steel can be greatly decreased and the green 
house gas emission can be significantly reduced accordingly. In 
addition, there are more and more construction projects were executed 
in Build-Operation-Transfer (BOT) contracts. Only designs considering 
both safety and economy are more competitive in the current 
construction market. The above considerations raise the importance and 
urgency of optimal design for engineering project. 
 
Since Dantzig (1947) proposed simplex method for solving linear 
programming problems in military and industry, numerous optimization 
algorithms have been developed and applied to solve for various 
engineering problems, such as structural design, transportation planning 
and construction management. However, only a small amount of 
research has been devoted to optimizing pile foundation design. Chow 
and Thevendran (1987) have used pile length as the main design 
variable to minimize differences in bearing loads between the piles in 

the pile group. Hoback and Truman (1993) used the optimality criteria 
(OC) method to conduct least weight design for a steel pile group. Hurd 
and Truman (2006) introduced a weightless optimality rule into the 
original OC approach to treat design variables, (e.g., the spacing and 
battering of the piles,) that has no measurable effect on the objective 
function. They only used sectional size and battering angle as design 
variables. Huang and Hinduja (1986) adopted a quasi-Newton method 
to optimize the shape of a pile foundation with the assumption of a 
linear force-deflection relationship for the pile-soil system. Valliappan 
et al. (1999) applied the generalized reduced gradient method to 
optimize pile foundation design with the lowest cost objective. Their 
design variables included pile length, diameter, number and pile cap. 
The FEM method was used to analyze pile foundation. The allowable 
total and differential settlements were the only constraints. Kim et al. 
(2001, 2002) used recursive quadratic programming and genetic 
algorithm to optimize the layout of a pile foundation, with minimum 
differential settlement being the objective and with the assumption of 
linear pile-soil interaction. Ng et al. (2006) adopted a genetic algorithm 
to optimize the design of in-situ bored pile foundation groups using the 
total volume of pile concrete as the objective function without 
considering steel reinforcement. Chan et al. (2009) presented an 
automatic optimal design method using a hybrid genetic algorithm for 
pile group foundation design with the concrete volume of the piles and 
the cap as the objective function. 
 
All the above research has contributed much to the problems of 
optimizing pile foundation design. However, most of these methods 
might be difficult to apply in practice owing to the fact that the adopted 
design method and constraints are not code-based and the objective 
function is not the total cost of the pile foundation system. Moreover, 
Global minimum solutions were not found to verify the performance of 
their proposed optimization algorithms. This study focuses on 
optimizing pile foundation design of a bridge structure using a code-
based design method. The real genetic algorithm (RGA), a global 
search method, was used to find the optimal solution. Combining the 
design and searching knowledge, the authors  present a practical 
methodology for optimizing pile group design. The following 
summarizes the design method and mathematical model, exhaustive 
and RGA search, performance of the RGA, and some concluding 
remarks. 
 
Design method and mathematical model 
 
1. Design method 
For popular use, the adopted design method must be practical, not too 
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complicated, and code-based. This study is based on the design code 
for bridge foundations published by the Japanese Road Association 
(JRA, 2002), supplemented by the Taiwan foundation and reinforced 
concrete design codes. The main design considerations are summarized 
and explained below. 
 
1.1 Design variables 
The layout of all pile foundations includes two assumptions. One is the 
equal diameter and length of all the piles and the other is the 
rectangular and symmetrical arrangement of pile locations. The design 
variables include pile length, pile diameter, thickness of the pile cap, 
pile spacing and pile numbers, in two directions, transverse and 
longitudinal to the bridge axis. All the variables are discrete real 
numbers except for pile numbers, which are integers. The symbols 
representing foundation size, applied force, and their directions, are 
shown in Fig. 1. The selection of the design variables has to comply 
with some limitations, such as the usable land area, maximum pile 
length due to piling capability and pile spacing in relation to excessive 
grouping and construction problems. 
 
1.2 Factors considered in the pile design 
The following main factors are considered in the pile design which 
include (1) Minimum thickness of pile cap; (2) pile bearing capacity; (3) 
group effect of pile foundation; (4) effect of soil liquefaction; (5) 
deformation and stress analysis of pile foundation; (6) resistance of pile 
cap; and (7) reinforced design. The minimum cap thickness is 
determined by checking the rigidity requirement of the pile cap, the 
punching shear requirement, and the connection type between pile and 
cap. The allowable compressive, uplift and lateral bearing capacities of 
a single pile have to be checked for normal and earthquake load cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The group effects of a pile foundation are taken into account through 
two group efficiency factors, ηv (Yang and Han, 1997) and ηh (Liu, 
1992), for the axial and lateral loading directions, respectively. The 
bearing capacity and stiffness of a pile foundation is reduced through a 
reduction factor DE owing to foundation soil liquefaction during 
earthquakes as suggested by JRA (2002). The deformation of pile cap 
and the internal forces in the individual pile was analyzed by the model 
shown in Fig. 2. In this model, the pile cap is assumed to be a rigid 
plate. The deformations of the cap, δx, δy, and α can be solved for using 
stiffness matrix equation under the applied forces H0, V0 and M0 at the 
center of the cap bottom. The lateral resistance H’ and moment 
resistance M’ provided by the side of the cap are also considered, as 
shown in Fig. 3. The design of reinforced steel must follow the 
requirements of the Design Code and Commentary to Concrete 
Structure in Taiwan (DCCCST, 2005) which is a modified local version 
of the ACI code (318-02). Basically, the steel bar design of pile and 
pile cap uses an exhaustive search procedure to search out the least 
weight solution from available design combinations incorporating 
different bar sizes and spacing which are commonly used in 
engineering practices. 
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Fig. 2 Analysis model of the pile foundation examined 
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Fig. 3 Resistances at the sides and the bottom of the pile cap 
 
2. Mathematical model for optimizing pile foundation design 
 
2.1 Objective function 
The total cost of a pile foundation is defined as the objective function 
 XF : 

 
         XFXFXFXFXF 4321   (1) 

 
where X is a set of design variables, X=(D, LP, NT, NL, ST, SL, HC); 

 XF1  is the excavation cost of the foundation pit;  XF2  is the cost of 
all the piles;  XF3  is the cost of the pile cap;  XF4  is the cost of 
backfilling the foundation pit. These will be described in further detail 
below. 
 
2.1.1 Cost of excavation and backfill 
The excavation cost is 11 )( fVXF cut , where )( 3mVcut  is the volume 

of the excavation; and )/( 3
1 mNTDf  is the unit price of earth 

excavation. Fig. 4 shows a schematic diagram of the foundation pit. 
The pit is excavated from ground level to the bottom of the cap with a 
slope angle of 45°. The excavation bottom is the area of the cap plus 1 
m on either side, for construction space. Thus, the volume of 
excavation can be written as 
 

    32

3

4
12 fcTcLfcTcLffcTcLcut DLLDLLDDLLV  ) (2) 

 
where cLL  and cTL  are the widths of the pile cap in the longitudinal 
and transverse directions respectively; fD  is the embedded depth of 
the pile cap. The backfill cost is 64 fVF fill , where )( 3mV fill  is the 
volume of compacted backfill; and 6f  is the unit price of the 
compacted backfill. The volume of compacted backfill is shown in  Fig. 
5. 
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Fig.4 Schematic diagram showing earth excavation 
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Fig. 5 Schematic diagram showing the volume of compacted fill 
 
2.1.2 Cost of pile and pile cap 
The cost of the pile consists of material costs for concrete and re-bar, 
and the cost for installing the pile. It can be written as 
 

   4322 fLfVfVNNXF PspspcTL    (3) 

 
where NL and NT are the numbers of the pile in the longitudinal and 
transverse directions to the bridge axis, respectively; )( 3mVpc  is the 
volume of concrete in the pile; )( 3mVps  is the volume of steel in the 
pile; s  is the unit weight of the steel re-bar; )/( 3

2 mNTDf  is the unit 
price of the concrete; )/(3 tonNTDf  is the unit price of the steel re-bar; 
and )/(4 mNTDf  is the unit price of pile installation. The cost of the 
pile cap includes the material costs for concrete and rebar, and the cost 
of formwork for casting the cap. It can be written as 
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  3253 fVfVfAXF scscccap   (4) 

 
where )( 2mAcap  is the area of the formwork; )( 3mVcc  is the concrete 
volume for the cap; csV  is the steel volume for the cap; and 

)/( 2
5 mNTDf  is the unit price for installing the formwork. 

 
2.2 Constraints 
There are a total of six constraints in the proposed mathematical model 
for optimizing pile foundation design. They are described in detail 
below. 
 
2.2.1 Restriction of usable land 
The size of the pile cap and excavation must be less than the area of 
land available for use. This constraint can be written as 
 

     
  01

121
1 




uci

fii

L

DDSN
Xg  (5) 

 
where Ni and Si are the number of piles and the pile spacing in the i   
direction, respectively; uciL )(  is the upper limit of the cap size in the i   
direction. 
 
2.2.2 Limitation of pile spacing 
According to JRA (2002), the minimum pile spacing has to be greater 
than the larger one of 0.75 m and 2.5 times the pile diameter. The 
constraint can be written as 
 

   
01

5.2,75.0max
2 

iS

D
Xg  (6) 

 
2.2.3 Restriction of pile length 
The pile length is restricted by the construction ability of the piling 
machine. Assuming that the maximum pile length that the machine can 
install is   uPL , the constraint can be written as 
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2.2.4 Limitation of shear resistance of pile cap 
The shear resistance is mainly related to the thickness of the pile cap 
and can be designed by checking the requirements for punching shear 
and beam shear. The minimum required cap thickness reqCH ,  is 

derived in Tab. 1 by (JRA, 2002 and DCCCST, 2005). The resulting 
constraint can be written as 
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2.2.5 Bearing capacity requirements 
The compressive, lateral and tensile forces PN, PH and RN applied to the 
pile head must be less than the allowable compressive, lateral and 
tensile bearing capacities Pa, Ha and Ra for the pile. The constraints can 
be written as 
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2.2.6 Limitation of lateral displacement of the pile head 
According to JRA (2002), the allowable lateral displacement a  at the 
pile head is equal to 1.0 cm in normal condition and 0.01D in 
earthquake condition (when cmmD a 5.1,5.1   ). Therefore, this 
constraint can be written as 
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 Note： CEH :Effective cap thickness（m） cE :Young’s modulus of cap concrete（kN/m2） VK :Spring coefficient at pile head（kN/m） 

 bd :Diameter of rebar（m） cf  :Compressive strength of concrete（kgf/cm2）  :Cantilever length of pile cap（m） 
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max,VP :Maximum compressive load of pile（kN） cq :Vertical surcharge on the cap（kN/m2） 
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Tab. 1 Formulae for determining cap thickness 
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2.3 Safety surplus index 
The safety surplus index (SSI) must be defined in order to understand 
the conservativeness of the analyzed stress and deformation states for a 
feasible design solution. The SSI for the ith stress or deformation state is 
defined below. 
 

%1001
,
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
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id
i V

V
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Where idV ,  is the ith analyzed variable state, such as the force and 
displacement of the pile head; iallV ,  is the allowable value of the ith 
variable state required by code, such as the allowable bearing capacity 
and lateral displacement. This index denotes the normalized difference 
between the analyzed variable and the allowable value. When 0iS , it 
means the analyzed ith state is safe. However, when 0iS , it indicates 
that unsafe condition prevail in the ith state, which might imply that the 
design is controlled by the ith variable state. This study proposed eight 

iS  indices. They are S1 for checking compressive bearing capacity of 
the pile; S2 for tensile bearing capacity of the pile; S3 for compressive 
bearing capacity of the pile group; S4 for lateral bearing capacity of the 
pile group; S5 for lateral displacement of the pile head; S6 for the 
punching shear check of the bridge pier; S7 for the punching shear 
check of a side pile; and S8 for checking the beam shear. 
 
3. Exhaustive Search and Real Genetic Algorithm 
 
3.1 Exhaustive Search Method (ESM) 
For finding the global optima, an automatic pile analysis program was 
developed by the authors to perform exhaustive search. The solution 
space is approximated as the set of the combinations of all discrete 
design variables with an acceptable discretized size. The program 
carried out pile analyses on all the solutions in the space. The infeasible 
solutions were then removed out based on the analysis results, leaving a 
space of feasible solutions. The feasible solutions were sorted by the 
cost. Then, the global optima is defined as the one with the minimum 
cost. 
 
3.2 Real Genetic Algorithm (RGA) 
A genetic algorithm belongs to a class of adaptive stochastic 
optimization algorithms. The terminology of genetic algorithm was first 
used by Holland (1975). The basic idea is to try to mimic natural 
evolution process in order to find a good algorithm. A typical genetic 
algorithm requires (1) a genetic representation of the solution domain 
and (2) a fitness function to evaluate the solution domain. Its general 
procedure can be summarized as below. 
 
1 Choose the initial population of individuals in some way 
2 Evaluate the fitness of each individual in that population 
3 Repeat the following steps on this generation until termination: (time 

limit, sufficient fitness achieved, etc.) 
a. Select the best-fit individuals for reproduction 
b. Breed new individuals through crossover and mutation operations 

to give birth to offspring 
c. Evaluate the individual fitness of new individuals 

d. Replace least-fit population with new individuals 
 
A. Fitness function 
There are a large number of different types of genetic algorithms. 
According to no lunch free theorem (Wolpert and Macready, 1997), the 
performance of an optimization algorithm is always problem-dependent. 
Thus, this research aims to understand if the genetic algorithm is 
suitable to finding the global optimal solution of piled foundation 
design problems and perform some sensitivity study of the parameters 
used in the genetic algorithm. The real valued encoding is used for its 
fitness to the problem. The chromosome is represented by the design 
vector of variables ),,,,,,( CTLTLP HSSNNLDX   as defined before. 
The fitness function is defined as the linear combination of the 
objective function and the unified constraint function as below. 
 

   XZRXF CFunction Fitness  (12) 

 
In which )(XF  is the objective function, CR  is a penalty parameter 
and  XZ  is the unified constraint function that is defined as 
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From its definition,   0XZ . When   0XZ , it means X is an 

infeasible solution. The smaller the )(XZ , the more close the X to the 

feasible zone. When   0XZ , it means all the constraints are satisfied 

with and the X is a feasible solution. 
 
There are a great number of methods to consider the influence of 
constraint function. However, the treatment is also problem-dependent. 
For simplicity, the simple static penalty method (SPM) and death 
penalty method (DPM) are used to reflect the influence of constraint 
function. The SPM uses a constant penalty parameter Rc with a value of 

15101 which makes the term )(XZRC of the same order with the 
objective function )(XF . The DPM (Back et al., 1991) deletes the 
infeasible solutions of the generated offspring after crossover and 
mutation operations, and reproduces the new offspring through 
crossover and mutation again, until all the generated offspring are 
feasible solutions. Michalewicz (1995) reported that the DPM can make 
search convergence in fewer generations, but with the price of spending 
longer time to produce feasible solutions. Thus, the real valued genetic 
algorithms (RGA) adopted in the research are classified into the RGA-
SPM and the RGA-DPM with the algorithm flow charts shown in Fig. 
6 and Fig. 7. 
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Fig.6 RGA-SPM flow chart 
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Fig. 7 RGA-DPM flow chart 
 
B. Selection 
The most used selection methods include roulette wheel selection, 
tournament selection, ranking selection and random selection methods. 
The former three methods use fitness values to choose more fit 
individuals into the crossover pool. Thus, the more fit the individuals, 
the more chance to be selected into the pool. This strategy is expected 

to achieve a more quick convergence since the better parents can 
produce the much better children, however, with the opportunity to 
reach premature convergence on poor solutions. For not missing the 
global optimal solution, this research uses the random selection method 
that is designed so that a small proportion of less fit solutions are 
selected. This helps keep the diversity of the population large, 
preventing premature convergence. The only parameter is the rate of 
crossover Pc. Each individual in the current population will have a 
random real number in [0, 1]. If the number is less than Pc, the 
associated individuals will enter into the crossover pool in sequence. 
The first individual enters in the pool will cross over with the one 
randomly chosen from the other individuals. The second individual will 
cross over in the same way until all the offspring are produced. 
 
C. Crossover 
The BLX crossover method is used to perform crossover operation 
at the crossover point. The method extends the range of the ith design 
variable iPx , , the crossover point of two selected parent individuals, 
outward   times of the original range, as shown in Fig. 8, thus 
redefine the range of the design variable of offspring individuals. 
 
The   parameter is set to be 0.25. If the ith design variable iPx ,  is 

selected to be the crossover point, In Fig. 8,  iPiP xxP ,2,1max ,max ,  

 iPiP xxP ,2,1min ,min  and minmax PPI  . Here defining the step of 

upper and lower neighboring points with iPx ,  is ix . Using a random 

number r in  1,0 , the  ith design variables of the child individuals are 
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In which, 1C  and 2C  are the new values of the design variable ix  of 

the children individuals, respectively. The round is a round off 
mathematics operator. 
 
For the other design variables, the simple crossover method is used. 
The formula for two child individuals can be written as 
 

 nPiPPPC xxCxxX ,21,212,11,11 ,,,,,,    (16) 

 nPiPPPC xxCxxX ,11,122,21,22 ,,,,,,    (17) 

I

maxPminP

II

 
Fig. 8 BLX-α Crossover 
 
D. Mutation 
For simplicity and computational efficiency, the random mutation 
method is used to perform mutation operation. Here, the design variable 
selected to mutate is defined as Mx ,  ulM xxx ,  in which ux , lx  are 
the upper and lower limits of Mx  , the neighboring step is ix . The 
mutated variable *

Mx can be generated by a random real number r in 
 1,0 and written as below. 
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In which, round  is a round off mathematics operator. 
 
Each design variable of the crossed over child individual has its own 
random number in  1,0 . If the number less than the rate of mutation PM, 
the associated variable needs to mutate randomly. The only parameter 
is the rate of mutation PM. 
 
E. Choosing the Individuals of Child Population 
After the selection, crossover and mutation, all the parent and child 
individuals are sorted in sequence based on their fitness values. The 
first NP individuals which are more fit are chosen as new child 
population. To prevent premature, the same parent and child 
individuals are retained only one. This sorting is a kind of elitism 
strategy. 
 
F. Stop Criteria 
This generational process is repeated until some convergence criteria 
have been reached. Common criteria are: 
 
(a) A solution is found that satisfies minimum criteria. 
(b) Fixed number of generations Ngmax reached. 
(c) Allocated budget (computation time/money) reached. 
(d) The highest ranking solution's fitness has reached a plateau such  

that successive iterations no longer produce better results. 
 
In the above criteria, (a) and (d) are difficult to judge and determine. 
The criterion (c) is actually similar to (b). Thus, this research uses a 
pre-set generation number Ngmax to terminate the computation based the 
results of parameter study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Performance of ESM and RGA 
In this section, six real design cases will be used to assess the 
performance of the ESM and RGA. Among them, cases I and II are 
cases of pile foundation designs for highway bridges. Cases III through 
VII are for Taiwan high speed railway (THSR) bridges. Tab. 2 shows 
the original design variables and the geological conditions of the seven 
cases. These data will used to compare the original design solution and 
the searched solutions of the ESM and RGA. 
 
4.1 Performance of ESM 
Tab. 3 shows the cost comparison of the original design solution and 
the ESM solution (regarded as the global optimal solution, GOS) for 
the seven cases. Obviously, the GOS gives a saving of about 17.6% to 
57.6% as compared to the original design solution. However, from Tab. 
3, the search time of the ESM is about 51,750 minutes (36 days). In 
general, the run time of the ESM can not be accepted in routine design 
practice. 
 
Tab. 3 Comparison of the results searched by ESM and RGA for all 
cases 

Case Method PL D CH LS  TS  LN  TN  
Cost 

(NTD) 

Number of 

Analysis 

Spending 

time 

(Min.) 

Original 15 1.2 2.2 3.05 3.05 3 3 2,039,924 - - 
Case I

ESM 26 1.1 1.8 4.10 3.60 2 2 1,391,274 10,221,120 51,100.0

Original 30 20 3.5 6.00 5.00 4 5 13,728,879 - - 
Case II

ESM 15 1.5 3.80 4.30 3.80 4 6 6,681,762 11,943,936 59,720.0

Original 58 2.0 2.5 9.00 6.00 2 3 7,203,524 - - 
Case III

ESM 25 1.8 2.8 4.50 4.60 4 2 4,541,702 10,349,856 51,750.0

Original 58 2.0 2.5 9.00 6.00 2 3 7,203,524 - - 
Case IV

ESM 36 1.5 2.6 3.80 3.80 4 3 5,145,433 10,349,856 51,750.0

Original 52 2.0 2.5 8.00 8.00 2 2 4,614,478 - - 
Case V

ESM 34 1.8 2.9 4.90 5.30 3 2 3,635,136 10,349,856 51,750.0

Original 49 2.0 2.5 8.00 8.00 2 2 4,244,042 - - 
Case VI

ESM 25 2.0 2.9 5.00 5.00 3 2 3,497,323 10,349,856 51,750.0

Original 50 2.0 2.5 8.00 8.00 2 2 4,296,826 - - 
Case VII

ESM 26 1.9 2.7 4.80 5.60 3 2 3,293,419 10,349,856 51,750.0

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab. 2 Original Design Variables and Geological Descriptions for the studied cases
Design Varibles 

Case Name 
PL (m) D (m) 

CH (m) LS (m) TS (m) LN  TN  Geological Description 
Has Bearing 

Layer? 

( 50N ) 

Case I 15 1.2 2.5 3.05 3.05 3 3 
Interbedded layer (composed of the sandy layer and 
the clayey layer), and both are uniform distributions 

Yes (16.2m) 

Case II 30 2.0 3.5 6.00 5.00 4 5 Sandy layer. No clayey layer. Yes (20.0m) 

Case III 44 2.0 3.0 6.00 6.00 3 3 

Interbedded layer (composed of the sandy layer and 
the clayey layer), and the majority is the sandy layer. 
Surface layer is a clayey layer. The maximum 
thickness of clayey layer is 6.8m. 

No 

Case IV 58 2.0 2.5 6.00 9.00 3 2 

Interbedded layer (composed of the sandy layer and 
the clayey layer), and the majority is the sandy layer. 
The total thickness of three clayey layers is about 
17.5m, and the maximum thickness of clayey layer is 
12.2m. 

Yes (46.0m) 

Case V 52 2.0 2.5 8.00 8.00 2 2 

Interbedded layer (composed of the sandy layer and 
the clayey layer), and the majority is the sandy layer. 
Surface layer is a clayey layer. The maximum 
thickness of clayey layer is 8.9m. 

No 

Case VI 49 2.0 2.5 8.00 8.00 2 2 

Interbedded layer (composed of the sandy layer and 
the clayey layer), and the majority is the sandy layer. 
Surface layer is a clayey layer. The maximum 
thickness of clayey layer is 19.5m. 

No 

Case VII 50 2.0 2.5 8.00 8.00 2 2 

Interbedded layer (composed of the sandy layer and 
the clayey layer), and the majority is the clayey layer. 
The total thickness of all sandy layers is about 12.2m, 
and the maximum thickness of sandy layer is 5.95m. 

No 
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4.2 Performance of RGA 
Since RGA is a random multiple-point search technique, the result of 
every RGA searching is different from the other. Thus, the RGA 
searching is executed one hundred times for each design case with 
some specific parameters, and the statistics of all the searched results 
are used to represent the performance of the RGA method. The 
performance of RGA will be influenced by the number of population 
NP, the rate of crossover Pc, the rate of mutation Pm and the total 
number of generic generation Ng,max. Therefore, at the first, Case I is 
used to conduct parameter study of the RGA algorithm. The test range 
of these four parameters is as below. 

,20050,100,150max, gN  

9.07.0 cP  

1.001.0 mP  

30,20,10,5PN  

Fig. 9 shows the decrease of the average cost of RGA solutions with the 
increase of generation number for different Pc and Pm with NP=10. 
Based on the result, and considering both cost saving and run time, it is 
suggested that Pc=0.8, Pm=0.1, Ng=200. Using the above three 
parameters, the influence of NP on the cost and the number of analysis 
is shown in Tab. 4. It shows that the larger the NP, the lower the cost 
and the more the run time. Considering both cost saving and run time, 
NP=20 is used in the following analysis. 
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Fig. 9 Decrease of the average cost of RGA solutions with the increase 
of generation number for different Pc and Pm with NP=10 
 
Tab. 4 Comparison of RGA searching results for different NP  

Cost (NTD) 

Np 
Mean Best Worest STD 

Pile Analysis 

Counts 

The proportion 

of best solution 

(%) 

5 1,528,102 1,427,735 1,689,314 62,931 1,600 0 

10 1,489,032 1,391,274 1,644,183 56,069 3,204 5 

20 1,459,222 1,391,274 1,584,811 35,692 6,400 9 

30 1,450,872 1,391,274 1,571,590 34,848 9,597 15 

  
 
After determination of the main optimization parameters of RGA, the 
design solutions of the seven cases searched by RGA-SPM and RGA-
DPM are summarized in Tab. 5 and Tab. 6. From Tab. 5, the RGA-
SPM algorithm gives a cost saving of about 15.63%-55.92%, in 
average 31.26%, as compared to the original design solutions. The 
average cost difference between the RGA-SPM solutions with global 
optimal solution (GOS) is only 2%. The search time of RGA-SPM is 
about 48 minutes which is far less than the time spent by ESM. In each 

case, the RGA-SPM always has opportunity to search out GOS. 
Especially in Case IV, each solution is GOS for the one hundred search 
executions. 
 
Tab. 5 Performance of RGA-SPM 

Case 

Saving form 

Original Case

(%) 

The difference to 

best solution 

(%) 

The proportion of 

best solution 

(%) 

Pile Analysis 

Counts 

 

Time 

Spent

(Min.)

Case I 28.88 4.28 15 9,597 48 

Case II 48.06 1.48 7 9,616 48 

Case III 55.92 3.48  5 9,609 48 

Case IV 28.57 0.00 100 9,630 48 

Case V 19.71 1.92 35 9,596 48 

Case VI 15.63 2.34 78 9,601 48 

Case VII 22.08 1.66 12 9,602 48 

Mean 31.26 1.99 36 9,607 48 

  
 
Tab. 6 Performance of RGA-DPM 

Case 

Saving form 

Original Case

(%) 

The difference to 

best solution 

(%) 

The proportion of 

best solution 

(%) 

Pile Analysis 

Counts 

 

Time 

Spent

(Min.)

Case I 28.82 4.37 6 13,160 66 

Case II 47.85 1.88 4 14,641 74 

Case III 55.85 3.66 2 11,390 57 

Case IV 28.57 0.00 100 8,852 44 

Case V 20.04 1.50 46 13,630 68 

Case VI 17.56 0.00 100 10,125 51 

Case VII 22.01 1.76 8 13,021 65 

Mean 31.53 1.62 38 12,117 61 

  
 
From Tab. 6, The RGA-DPM algorithm gives a cost saving of about 
17.56%-55.85%, in average 31.53%, as compared to the original design 
solutions. The average cost difference between the RGA-DPM 
solutions with global optimal solution (GOS) is only 1.62%. The search 
time of RGA-DPM is about 61 minutes which is 13 minutes longer than 
the time spent by RGA-SPM. In each case, the RGA-SPM always has 
opportunity to search out GOS. Especially in Case IV and VI, each 
solution is GOS for the one hundred search executions. The solution 
quality of RGA-DPM is a little better than that of RGA-SPM, but with 
the price of a little longer search time. 
 
For the seven cases in the study, the one with the minimum cost among 
the one hundred solutions searched by RGA has to be GOS and the 
search time is only 48-61minutes, which is far less 51,750 minutes, the 
time spent by ESM. The above results demonstrate the performance of 
RGA method is very good in searching GOS of pile foundation design 
problem. 
 
CONCLUSIONS 
 
This paper presents a complete framework where pile foundation 
design can be optimized by RGA method for minimizing the total 
construction costs. The adopted design methodology is code-based so 
that it is quite acceptable in routine designs. The time of one hundred 
executions of RGA search is about one hour which is far faster than 36 
days, the time spent by ESM to search global optimal solution.  For the 
seven real case studies discussed in the paper, we demonstrate how 
reliably the RGA can find the global optimal solution during one 
hundred random search. The RGA solutions also save about 16% to 
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56% in total construction costs for the seven cases, as compared to the 
original design solutions. Thus, this methodology is shown to be a 
promising tool for solving optimization problems in the applicable 
geotechnical fields. 
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