中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

遙測技術應用於山區地下水

潛能場址之研究

林榮潤* 許世孟** 李鳳梅***

摘 要

臺灣位於板塊構造的活動帶,使得山區地形與地質構造變化複雜,亦影響山區的水文地質特性 與地下水資源蘊藏。如何建立廣域的地下水潛能場址之調查技術,以提升潛能場址規劃與探勘之經 濟效益,係山區地下水資源調查之重要課題之一。由於遙測技術具有宏觀性、綜合性、豐富性、實 用性及經濟性等特性,故應用遙測技術於地下水資源探勘,乃具有高度的優勢。

本研究使用 Landsat 衛星影像波段組合分析技術,分析臺灣中段山區地下水蘊藏特徵影像,並 透過既有地下水觀測站井作驗證,以瞭解潛能場址的地下水蘊藏特徵影像,故潛能場址乃分布於特 徵影像區域、綠色地毯地形、線性構造,或包含其上游集水區。因此,根據本研究成果所建立的衛 星影像分析與判釋流程,可瞭解山區地下水蘊藏潛能亮點區位之分布,並解決特定研究需求與土地 取得等限制,讓調查規劃場址獲得最佳化,以提升地下水潛能場址探勘之準確性與經濟效益。 關鍵字:遙測技術、波段組合分析、地下水蘊藏特徵影像、綠色地毯、線性構造、上游集水區

一、前言

國際水協會(International Water Association, IWA)於 2008 年曾統計全球百大城市的耗水 量,我國臺北與高雄則高居第二與第七名,分 別每人每天需 352 與 244 公升的用水量。而世 界水資源評估計畫(World Water Assessment Programme, WWAP)於 2009 年指出全球的取水 來源有 18% 來自地下水,而有 48% 的飲用水來 自於地下水。此外,歐晉德教授於 2014 年至中 興工程顧問社專題演講中指出,全球因人口增加 與都市發展趨勢,未來超級都市(Megacities) 在亞洲地區高達 35 個之多, 遠多於其他地區, 故凸顯出水資源的需求有其急迫性與必要性。因 此, 世界各國為了讓水資源能永續利用與發展, 乃積極投入經費尋找替代性的水資源。

由於遙測技術具有宏觀性、綜合性、豐富 性、實用性及經濟性等特性,故遙測技術應用 於地下水資源探勘乃具有高度優勢(Becker, 2006)。在國際上,指標性的單位—美國太空總 署(National Aeronautics and Space Administration, NASA)致力於太空科技與遙測技術研發,亦協 助缺水國家進行水資源探勘工作。而國內亦不斷 地發展 Formosat 衛星,展現我國太空技術亦達到

^{*} 中興工程顧問社大地工程研究中心副研究員

^{**} 中興工程顧問社大地工程研究中心水文地質調查組組長

^{***} 中興工程顧問社大地工程研究中心助理研究員

中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

自主發展能力。因此,在國際水情需求下,地下 水資源探勘技術需不斷地精進,冀期透過遙測技 術作初步地下水資源潛能場址之判釋,以提供現 地調查與施作之參考,並提高工作與經濟效益。

本研究欲探討遙測影像應用於臺灣山區地下 水資源潛能場址之特性,以助於未來選址與執行 相關地下水資源探勘之依歸,故彙整了經濟部中 央地質調查所(以下簡稱地調所)民國 99 至 102 年「山區地下岩層水力特性調查與地下水位觀測 井建置」成果,以進行分析各場址 Landsat 衛星 影像的地下水蘊藏之反射波譜資訊,進而釐定地 下水蘊藏潛能場址之衛星影像特徵影像與空間分 布特性。

二、文獻回顧

遙感探測(Remote Sensing)是指由高空接 收地表反射或發出的電磁波訊號來解讀地表和水 體資訊的一種方式(Campbell, 2002)。自然界 中任何地物都具有其本身的電磁輻射規律,當電 磁波輻射能量入射到地物表面上,每一種物體針 對不同的輻射波段都有一特定的反射比率之波譜 (圖 1),故遙感探測之基本物理概念,即是透 過感測器(Sensor)接收地物目標物所反射出的 電磁波信號,利用光譜來判讀特徵頻率或波譜數 據後。再透過各像元反射波譜轉化成數位化數值 (Digital Number, DN),範圍為0至255,進而 轉換成影像(圖 2),以提供吾人分析目標物所 傳達之資訊。

以美國 Landsat 衛星為例, Landsat-5 衛星係 搭載主題成像儀(Thematic Mapper, TM)感測 器,而 Landsat-7 則搭載著進階主題強化成像儀 (Enhanced Thematic Mapper Plus, ETM+),皆 有七個波段,可觀測到較豐富的影像資訊。由 圖 3 可知, Landsat 衛星偵測到土壤、植物與水 體時所呈現不同的反射波譜曲線(Spectral Reflectance Curves),在可見光波段範圍內(0.4 to 0.7 µm)水體的電磁波反射率最低,而土壤與

植物於各波長有不同的反射率。Lillesand and Kiefer (1994)指出,Landsat 衛星影像各波段的特性與其可應用之領域,如表 1 所示。故針對地下水研究議題,可萃取出涵蓋地下水資訊最豐富的波段進行分析,其中 ETM 3 波段有利於區分地貌、岩性、土壤、植被等;ETM 4 波段對綠色植物的類別差異最顯著,為植物通用的波段;ETM 5 波段反應含水量亦較顯著,可用於土壤含水率、植物含水量、水分布狀況等研究;ETM 7 波段則有助於岩石礦物型態之分辨。

(Delio Tortosa, 2002)

表 1 美國 Landsat 衛星不同波段的特性與用途 (修改自: Lillesand and Kiefer, 1994)

波段	波長(μm) R: 反射 E: 輻射	光譜 位置		應用
1	0.45 – 0.52 R	可	藍光	海洋水色遙測、土壤與植 生辨識、森林分類、人為 活動辨識
2	0.52 – 0.60 R	見光	綠光	植生辨識與健康監測、農 耕活動辨識
3	0.63 – 0.69 R		紅光	植物物種分類、人為活動 辨識
4	0.76 – 0.90 R	近紅外光		植生監測、生物質量評估 、土壤濕度監測、水體辨 識
5	1.55 – 1.75 R	短波紅外光		植物含水量監測
6	10.4 – 12.5 E	熱紅外光		地表溫度、植物生長監測 、土壤濕度監測、雲層辨 議與火山監測
7	2.08 – 2.35 R	短波紅外光		岩石礦物辨識、植生含水 量

由於各衛星與波段範圍可蘊含許多豐富的資 訊,故可透過單波段或多波段組合來判釋地下 水資訊。單波段方面,Meijerink *et al.*(2007)透 過 Landsat-5 的 TM5 波段,分析沖積扇的植生、 地下水蘊藏、線性構造與水文地質架構等資訊, 如圖 4 與圖 5 所示。多波段分析方面,為獲得最 佳的波段組合,需對各波段遙測訊息豐富程度與 地下水蘊藏區、生態環境區等邊界進行分析,

扇尾(L)
 植生(箭頭)
 地下水蘊藏(E)
 淺層地下水位使地表鹽化特徵(S)

(Meijerink et al., 2007)

圖 4 Perennial 沖積扇水文地質架構判釋與地下 水資訊判釋成果

中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

並利用數學模式進行相關性、離散性分析,最後 篩選特徵影像進行疊加處理。中國四川省地質礦 物局(2006)使用 Landsat-5 波段合成影像,針 對不同地形與區域,進行地下水蘊藏潛能區判釋 與劃分(圖 6)。武毅(2006)使用 Landsat-7 衛 星影像提取出地下水蘊藏重要資訊,進而繪製地 下水蘊藏潛能分布成果圖(圖 7)。

(Meijerink et al., 2007)

圖 5 Landsat TM 5 波段判釋線性構造以評估區 域地下水蘊藏潛勢

(四川省地質礦物局,2006)

圖 6 中國四川紅層丘陵區遙測影像探測地下水

圖 7 中國凌源市遙測影像探測地下水成果圖

程技術

Т

中興工程 · 第127期 · 2015年4月 · PP. 11-19 http://www.sinotech.org.tw/journal/

財團法人中興工程原問社 SINOTECH ENGINEERING CONSULTANTS, INC.

三、研究區域

本研究區域為臺灣中段山區,由北而南包括 有:大甲溪流域、烏溪流域與濁水溪流域,而東 部則有立霧溪與花蓮溪流域,如圖 8 所示。地質 分區與岩性分布由西向東分別為:西部麓山帶 (漸新世至更新世的砂岩、頁岩、砂頁互層與礫 岩等沉積岩)、中央山脈西翼的雪山山脈帶(始 新世至漸新世的石英岩、板岩與硬頁岩等變質 岩)、脊樑山脈帶(中新世的板岩與千枚岩)、 中央山脈東翼太魯閣與玉里帶(晚古生代至中生 代的片岩、片麻岩、大理岩等變質岩)、以及海 岸山脈帶(中新世至更新世的砂岩、頁岩、泥 岩、與火山角礫岩與碎屑岩等沉積岩)。

地調所在民國 99 至 102 年於本研究區不同 的地形、地貌與地層中,共布置了 75 處地質鑽 探場址,以獲得各場址的地層與裂隙分布、水文 地質參數;此外,其中有 48 處場址另建置六吋 的地下水觀測站井,以進行抽水試驗並求得井出 水量等資料。而根據 Struckmeire 舉 Margat (1995)研究成果進行潛能場址分類,其井出水 量每分鐘有 60~600 公升,可提供地方性供水, 而每分鐘大於 600 公升之場址,可提供區域性供 水,故地下水潛能場址之供水量應符合每分鐘 60 公升以上才具有經濟價值與規模。因此,上述 48 處場址進行潛能場址分類後,可提供後續影像分 析成果之驗證使用。

四、研究方法

山區「綠色地毯」等未固結岩層之區域,係 為重要的地下水資源蘊藏區(地調所,2013); 此外,影響山區地下水蘊藏的因子有很多,尤其 係岩層的裂隙、岩性、位態與坡向關係等(Hsu, *et al.*,2012),故各岩層的地質條件不同,亦影 響區域的地下水資源蘊藏與供水潛能。因此,本 研究欲透過衛星影像波段分析成果,萃取出上述 影響地下水蘊藏潛能之重要資訊,綜合探討地表 植生、土壤濕度,以及地表下的水文地質特性、 裂隙構造與地下水分布等情形,如圖9所示,進 而釐定出地下水蘊藏潛能之特徵影像與分布範圍。

地下水蘊藏

河床

由於 Landsat 衛星主要規劃任務乃觀測地球 資源之訊息,適合水文與地下水相關的影像分析 與研究。故本研究採用 1990 年 7 月 22 日 Landsat-5 衛星影像,進行本研究區一系列的影像 分析,並透過地調所於本研究區 48 處的地下水 觀測井與井出水量參數,進行本研究方法之驗 證。茲將分析方法說明如下:

(一)地下水蘊藏特徵影像分析

在 Landsat-5 衛星影像的 TM3、TM4、TM5 與 TM7 波段中,具有植生、土壤濕度、地下水 蘊藏、岩石與地形特徵等豐富的訊息,其影響地 下水蘊藏的關連性高,故本研究使用 ERDAS IMAGE 軟體將此四個波段進行影像融合,並於 ArcGIS 軟體中將紅光 TM3 波段加強影像增揚與 繪製,則可凸顯出地下水蘊藏特徵影像,以利於 判釋地下水潛能場址與繪製成果圖資,其特徵 DN 數值介於 100~150。以南投埔里蜈蚣站分析 成果為例,圖 10(左) 圈繪區域的深色區塊即可 能為富含地下水之特徵影像。

圖 10 地下水蘊藏特徵影像分析成果圖

(二) 地貌特徵影像分析

由於地表地貌的改變,如人為的建物、結構物、農墾或自然的河床侵蝕堆積、山崩土石流等 影響地貌的改變,皆會誤判地下水蘊藏特徵影像 之分析成果,故需再透過地貌特徵影像分析,以

中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

確認該區域地下水蘊藏特徵影像之存在。在衛星影 像處理技術方面,本研究分別將Landsat-5 衛星影像 中的 TM1、TM4 與 TM3 波段進行影像融合成假 色態(False Color),並透過現地查核,則可準 確地分類出湖泊、植生、河川、河床、農田、建 物與道路等地貌,如圖 11 所示。

圖 11 地表地貌分析成果示意圖

從地貌特徵影像分析成果比對上述地下水蘊 藏特徵影像之影像圖,以確認該區域特徵影像非 人為建物與結構物之影響,即可初步篩選出地下 水潛能場址,例如:上述蜈蚣站實際的井出水量 有每分鐘 240 公升之多,其特徵影像區域係較少 受建物的影響(圖 10)。

(三)水文地質特性分析

上述兩項影像分析成果,需再搭配場址的水 文地質特性分析,以瞭解該區域具備地下水蘊藏 的空間與補注來源,進而提供判釋潛能場址之依 據。本研究根據現地調查經驗與文獻,提出三個 重要的分析項目:綠色地毯之地形與地質條件、 線性構造(Lineament),以及場址上游集水區的 地下水流場分布。

1. 綠色地毯地形與地質條件

山區的綠色地毯主要有:崩積層、階地堆積 層、河床堆積、山前堆積與山間盆地等未固結岩 層,相對於岩盤有較高的孔隙率與水資源蘊藏潛 能,故場址所在的地層中,有覆蓋或鄰近綠色地 毯之岩層,更能提高該場址之供水潛能,而在影

中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

像判釋上面,由於此地形、地質條件與鄰近的岩 盤或河川而有所差異,在地下水蘊藏特徵影像分 析中,則有不同的特徵影像 DN 數值,可明顯地 圈繪其地形特徵(圖 12),而有助於地形分類。

圖 12 山區綠色地毯種類在影像分析之型態

由圖 12 可知,一般崩積堆積層與階地堆積 層較不容易區分而導致誤判,在本研究特徵影像 分析中,可清楚地判釋出崩積堆積層的三角錐狀 特徵,及階地堆積層的矩形特徵。另外,沖積 層、下游的階地堆積、山間盆地與山前堆積等, 因坡度較緩而分布較廣,使得特徵影像區域亦較 廣,而河床則沿著河道成帶狀分布,由於該區域 地勢較為平坦且富含地下水,適合村落發展與建 設,此影像特徵影像可能受到上述人為建物與結 構物的影響波段,故需有現地經驗、地形與地質 學等知識加以辨識。

2. 線性構造

山區地層受大地應力的影響可產生多組的裂 隊,而延展性較佳的裂隙,在影像中可呈現線性 條狀,故稱為線性構造。多組的線性構造使得線 性密度較高,或線性有所連通,有利於地下水流 通與蘊藏,故線性構造因與鄰近的緻密岩層在地 下水蘊藏特徵影像上,亦有其差異性而呈現線條 狀,如圖 13 所示。其判釋成果可透過地貌特徵 影像分析,確認非線性排列的建物或道路所產生 的誤判,或者可於現地露頭與孔內攝影量測弱面 位態統計成果以進行驗證。以鳳義站虎頭山片岩 為例(圖 14),其西北-東南向的線性構造較為 明顯且延展性較佳,且符合孔內分析的 N061 弱 面,故推測線性構造乃為片岩的片理所造成。

3. 地下水流場分析

依據地下水流動的特性(圖 9)可知,場址 位於地下水滲流區可匯集豐富的地下水,此乃因 其上游集水區有高水頭的流場補注,而下游岩層 的地下水若有連通,亦可能抽取較多的供水量。 因此地下水蘊藏特徵影像排除人為結構物等影像

財團法人中興工程 顔間社 SINOTECH ENGINEERING CONSULTANTS,INC.

中興工程·第127期·2015年4月·PP. 11-19 http://www.sinotech.org.tw/journal/

後,仍具有較多範圍的特徵影像,且涵蓋上游集 水區者,則為高潛能場址。例如:仁和站與興隆 站皆位於相似的坡地地形,由圖 15 可知,仁和 站場址上游集水區地下水蘊藏特徵影像,故井出 水量則較多;相反地,興隆站則較少。

圖 15 場址上游集水區地下水流場分析圖

五、結果與討論

排除 2 處場址受雲層的影響,本研究區 46 處地下水觀測站井之 Landsat-5 衛星影像的分析 結果,如表 2 所示,茲將各成果說明如下:

(一)山區地下水潛能場址判釋成果

由表 3 可知,首先透過本研究地下水蘊藏特 徵影像分析,其 4 站場址沒有或較少有此特徵影 像者符合為非潛能場址,而 18 站有此特徵影像 者為潛能場址,故第一階段判釋正確的場址有 22 站,其正確率為 47%。第二階段可透過地貌特徵 影像分析,以瞭解該區域建物等人為結構物之分 布情形,其場址的地下水蘊藏特徵影像涵蓋較多 的人為結構物,該場址乃非具備實際的地下水蘊 藏之特徵影像,由此可知西寶等 17 站場址符合 此特性,亦為非潛能場址,其累積正確數量有 39 站,高達 85% 之正確率。此外,針對其他場址 則需再進一步地瞭解其水文地質特性與探討,分 析結果顯示,山峰等 5 站場址因位於該區域較高 的區域或無上游地下水流場的補注,故蘊藏的地 下水資源量較少,符合為非潛能場址;而鳳義

表 2 本研究各場址衛星影像分析成果

場址		廿山水昌		符合條件					
		升出小重 (I/min)	地形		Б		С		
		(L/min)		А	в	u/d	1	g	
	鯉魚潭	900.0	山間盆地	0	0	d	0	g	
	鳳義	780.0	坡地	3	2	u	1	0	
	地利	706.7	河岸古崩積層	3	2	u	0	g	
	燕子口	480.0	坡地	3	2	u	1	0	
	池南	420.0	坡地	3	2	u	0	0	
	惠蓀	360.0	坡地	3	1	u	0	0	
	仁和	310.0	坡地	3	1	u	0	0	
	八仙山	300.0	坡地	3	1	u	0	0	
洒	蜈蚣	240.0	坡地	3	0	u	1	0	
能	水源	240.0	坡地	3	0	u	0	0	
場	南豐	240.0	階地	3	1	u	0	g	
业	中興	150.0	山前堆積	3	2	u	0	g	
	石角	144.0	下游河岸	3	2	d	0	g	
	博愛	125.0	支流河岸	3	0	u	0	0	
	羅娜	106.9	匯流河岸	3	2	d	0	g	
	東源	100.0	山前堆積	3	3	d	0	g	
	洛韶	90.0	坡地	3	2	u	0	0	
	內茅埔	88.3	階地	3	1	d	1	g	
	武陵	72.0	階地	3	2	u	0	g	
	中和	62.8	沖積與階地	3	3	u	0	g	
	西寶	48.0	坡地	3	3	0	0	0	
	春陽 42.0		坡地	3	3	u2	0	0	
	和社	40.0	階地	3	3	d2	0	g	
	親愛 36.0		坡地	3	3	u2	0	0	
	裡冷	36.0	坡地旁有崩積	3	2	u1	0	0	
	溪頭	32.4	坡地古崩積層	3	3	0	0	g	
	互助	30.0	坡地,下游階地	3	3	u1	0	0	
	和平	30.0	坡地	3	3	u1	0	0	
	山峰	22.8	溪溝源頭	3	2	0	0	0	
	坪頂	21.7	台地頂部	3	1	0	0	0	
	法治	18.0	階地(G)	3	2	u1	0	g	
悲	奧萬大	12.0	坡地	3	3	0	0	0	
潜台	興隆	11.9	坡地	3	2	u1	0	0	
貼場	清水	11.7	河岸	3	3	0	0	0	
业	南港	10.0	坡地	3	3	0	0	0	
	車埕	8.1	坡地	3	3	0	0	0	
	瑞龍	6.8	河岸	0	0	0	0	0	
	大石	6.0	坡地	3	2	u1	0	0	
	內湖	5.8	支流河岸	3	3	0	0	0	
	中坑	2.8	坡地	3	3	0	0	0	
	湖木	2.2	溪溝坡地	0	0	0	0	0	
	(四)十								
	清水2	1.7	坡地	3	3	0	0	0	
	<u>清水 2</u> 環山	1.7 0.9	<u> </u>	3 3	3	0	0	0	
	荷水 2 清水 2 環山 桶頭	1.7 0.9 0.6	坡地 坡地 坡地	3 3 3	3 3 3	0 0 0	0 0 0	0 0 0	
	荷本 清水2 環山 桶頭 福盛	1.7 0.9 0.6 0.2	坡地 坡地 坡地 古土石流	3 3 1	3 3 3 3	0 0 0	0 0 0	0 0 0 g	

註:A-地下水蘊藏特徵影像;B-地貌特徵建物;0-3 代表 無、少、中、多;C-水文地質特性:場址上或下游 有地下水蘊藏特徵影像(u與d)、線性構造(1)、 綠色地毯地形(g)。 中興工程 · 第127期 · 2015年4月 · PP. 11-19 http://www.sinotech.org.tw/journal/

財團法人中興工程 顔問社 SINOTECH ENGINEERING CONSULTANTS,INC.

表3 本研究方法應用於潛能場址判釋成果

分析方法					累積 正確數量	累積正確 量 率(%)	
地水 徴像 析				22	48		
	抽箱				39	85	
	地 特 徴 影 像 分 析	場 上 游 場 分 析			44	96	
			線性		45	98	
			構造 分布	綠色地 毯地形	46	100	

站經過影像線性分析,且符合孔內井測弱面位態統計分析成果,證實該場址受線性構造的影響, 使地下水有所連通,故其場址井出水量較高;南 投鯉魚潭場址皆無特徵影像,而井出水量較多的 情形,可歸納於該場址位於山間盆地的綠色地毯 之地形,其本身多孔隙的地質條件有利於地下水 的蘊藏,故該場址因鄰近此地形單元,可抽取豐 沛的地下水量。

(二)山區地下水潛能場址重要條件的歸納

根據表 2 可知,潛能場址的上游集水區大多 具備有地下水蘊藏特徵影像,故場址上游有重要 的地下水補注來源,方能提供較多的地下水量。 未來進行山區地下水資源潛能場址探勘與開發等 工作,其場址上游集水區的地下水蘊藏特徵乃為 關鍵的條件,亦是地下水永續利用與保育課題下 重要的地下水補注保育區域。

(三)提高場址選擇準確性與經濟效益

1. 減少現勘作業與誤判,提升經濟效益

在現地勘查中,可能認為地勢平坦或鄰近河 道的區域為高潛能場址,例如:瑞龍場址,但在 衛星影像波段分析可瞭解該場址無地下水蘊藏特 徵影像分布,故潛能較低,如圖 16 所示。因此 透過本研究的影像分析成果與判釋,可減少現勘 選趾與誤判之情形,並選出地下水潛能場址以符 合其經濟效益。

2. 最佳場址區位調整之探討

由於有些區域可能有特定研究議題或有迫切 地下水資源開發之需求,以及受限於土地取得之 影響,必須進行場址最佳化之建議。本研究發 現,將特徵影像扣除建物所影響的面積與場址井 出水量進行統計分析,可獲得一正相關性,尤其 在非潛能場址中更加顯著,如圖 17 所示。其 中,和社與互助等階地場址,若將場址調整至上 游集水區有特徵影像之區域,則應可提升為潛能 場址,而其他非潛能場址區域中,依據排除建物 影響之特徵影像範圍較大的區域,其井出水量則 有較多的趨勢。

(四)建立衛星影像分析與判釋流程

根據本研究成果顯示,Landsat 衛星影像的 波段組合分析,可產出地下水蘊藏特徵影像影像 圖與地表地貌特徵影像圖,有助於判釋地下水潛 能場址;此外,再透過場址水文地質特性評估,以 瞭解場址的地下水蘊藏特徵影像分布於綠色地毯 地形單元、線性構造,或包含其上游集水區,則 可有效地提升場址判釋之準確性。本研究建置的 遙測技術判釋地下水潛能場址流程圖(圖 18),以 期提供未來相關場址選擇之依據。

六、結 論

依據本研究提出的五項衛星影像分析方法與 判釋,獲得良好的準確性,以驗證本研究方法之 可行性。透過本研究分析出的地下水蘊藏特徵影 像中,可綜合反應出利於地下水蘊藏的岩性與線 性構造,以及因地下水流動而影響地表的植生與 土壤濕度等資訊。未來相關的調查與研究可依據 本研究的分析與判釋流程,圈繪出山區地下水潛 能場址之亮點區位,以符合特徵影像區域,或山 區綠色地毯的地形與地質條件、邊坡上游集水區 有地下水補注來源與線性構造,而有助於地下水 連通與蘊藏。因此應用衛星影像萃取出的地下水 特徵影像進行判釋,有助於提升地下水潛能場址 規劃與探勘之正確性與效益。

參考文獻

- 四川省地質礦物局(2006)四川省紅層丘陵區地下水遙 感綜合調查圖冊,四川省地質礦物局
- 武毅(2006)遙感、物探、鑽探技術在西部嚴重缺水地 區地下水勘查中的集成化研究,中國地質調查局水文 地質工程地質技術方法研究所
- 經濟部中央地質調查所(2010-2013)臺灣山區地下水資 源調查調查研究整體計畫-臺灣中段山區地下岩層水 力特性調查與地下水位觀測井建置,中興工程顧問社
- Becker, M. W. (2006) Potential for Satellite Remote Sensing of Ground Water, Ground Water, Vol. 44, No. 2, pp. 306-318
- Campbell, J. B. (2002) Introduction to Remote Sensing, CRC Press
- Ciznicki, M., Kurowski, K., Plaza, A., (2012) Graphics Processing Unit Implementation of JPEG2000 for Hyperspectral Image Compression, Journal of Applied Remote Sensing, 6 (1), pp. 061507-1-061507-14
- Hsu, S. M., Lin, J. J., Chen, N. C., Lin, Y. T., Huang, C. C. (2012) Identification of Groundwater Potential Site in Taiwan Mountainous Region, American Geophysical Union's 45th Annual Fall Meeting, San Francisco of U.S.A., December 3rd-7th
- Lillesand, T. and Kiefer, R. (1994) Remote Sensing and Image Interpretation, John Wiley and Sons, Inc., New York, pp. 468
- Meijerink A. M. J. (2007) Remote Sensing Applications to Groundwater, United Nations Educational, Scientific and Cultural Organization (UNESCO), IHP-VI, Series of Groundwater No. 16
- Siegmund, A. and Menz, G. (2005) Fernes Nah Gebracht -Satelliten- und Luftbildeinsatz zur Analyse von Umweltveränderungen im Geographieunterricht, Geographie und Schule, 154 (27), pp.2-10
- Struckmeier, W. F., and Margat, J. (1995) Hydrogeological Maps - A Guide and a Standard Legend, Hannover, Germany, International Contributions to Hydrogeology, IAH publication, 17, Verlag Heinz Heise
- Tortosa, D. (2002) Old Rocks, New Ideas: Revisiting the Montreal River Uranium Prospects, GeoForum Web Site, Available: http://www.soonet.ca/eliris/