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Problems of composite finite wedges under anti-plane shear applied on a circular arc are analyzed in

this study. The considered conditions of radial edges are free–free, free–fixed, and fixed–fixed. A

procedure that uses the finite Mellin transform and the Laplace transform is developed to solve these

problems. Explicit solutions for displacement and stress fields are derived. Stress intensity factors (SIFs)

of composite circular shafts with an interfacial edge crack are extracted from the derived stress fields,

and the distributions for various loading angles are presented and discussed. It was found that if the

loading angles are the same, free–free and fixed–fixed edge problems can be degenerated into single

material problems. Uniform stresses were found along the interface in free–free and fixed–fixed edge

problems. Solutions of a general loading case deduced from the derived results compare well with those

obtained from finite element (FE) analyses.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wedge problems have been investigated by many researchers. In-plane stress analysis of an isotropic wedge was first conducted by
Tranter [1] using the Mellin transform of the Airy stress function in cylindrical coordinates. Thereafter, a number of associated in-plane
problems were extended to bi-materials and anisotropic materials, with emphasis placed on the order of the stress singularity and the
stress distribution near the wedge apex [2–9]. For these problems, out-of-plane normal stresses/strains are relative to in-plane stresses/
strains, and out-of-plane (anti-plane) shear stresses/strains are zero, which is due to the plane stress/strain condition being used. Studies
which treated out-of-plane shear stresses/strains with zero in-plane stresses/strains used the generalized plane strain condition [10]. The
wedges were usually regarded as sectors with infinite/finite radii using cylindrical coordinates. For cases with infinite radii [11–16], the
order of the stress singularity as well as the stress distributions for a range near the wedge apex was determined. The corresponding SIFs
were calculated using the assumption that the problems were in infinite domains. Nonetheless, the obtained SIF from the analysis of an
infinite domain should be calibrated by a suitable geometric function to make it fit for an application. The true full-field stress
distributions can be affected by all the boundaries in addition to the locations near the wedge apex. Accordingly, wedges with finite radii
have been considered [17–21].

Stress analysis of a finite domain is helpful for the comprehensive understanding of a problem. Although there are some numerical
methods [22,23] that can be used to determine the full-field stress distributions for a wedge problem, analytical expressions for a finite
wedge under anti-plane shear deformation can be obtained using the methods of the integral transform [18]. SIF can then be represented
by an equation with geometric factors for convenience. All previous studies, except for particular cases in Shahani [20] and Lin and Ma
[21], considered a group of problems with materials subjected to anti-plane shear loads in radial directions. The conditions of the circular
arc of the wedge were fixed or traction free. As a result, the solutions are accessible after the integral transforms. However, wedges with
finite radii may be subjected to loads on the circular boundaries, especially in cases of crack problems. To this end, the present study
considers another group of finite wedge problems. The tractions are subjected to a circular arc, and traction free or fixed conditions are
imposed on the radial edges of the wedge.

In the present work, a procedure that uses the finite Mellin transform in conjunction with the Laplace transform is proposed for
solving the stated problems. Based on the proposed procedure with the prescribed point loads, fundamental solutions for this type of
anti-plane shear problem of a composite finite wedge as well as the corresponding SIFs are obtained. Solutions for related general loading
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Nomenclature

a radius of the finite wedge
AI, AII, AIII coefficients of solution in the Mellin domain
BI, BII, BIII coefficients of solution in the Mellin domain
c strip of regularity in the complex plane of the Mellin

domain
DI, DII, DIII determinants of two-by-two matrices (character-

istic functions)
D0II differential of DII

f(j) function for the finite Mellin transformation
f nðjÞ2 function after applying the finite Mellin transforma-

tion
F concentrated anti-plane shear force
FE finite element
HðIÞIII , HðIIÞIII , HðIIIÞIII normalized mode III stress intensity factors
j material number (j ¼ 1, 2)
KðIÞIII , KðIIÞIII , K ðIIIÞIII mode III stress intensity factors
L[] applying the Laplace transform
L�1[] applying the inverse Laplace transform
M2[] applying the finite Mellin transform of the second

kind
M2
�1[] applying the inverse finite Mellin transform of the

second kind
ODE ordinary differential equation
p parameter in the kernel of the finite Mellin trans-

form
p�, p+ negative and positive roots of DL ¼ 0 (L ¼ I, II, III)
p1, L smallest positive root of DL ¼ 0 (L ¼ I, II, III)
pn, II positive roots of DII ¼ 0 (n ¼ 1, 2, 3, y)
P anti-plane shear pressure
r cylindrical coordinate axis
R ratio of material constants (m1/m2)
Re[] real part
s parameter in the kernel of the Laplace transform
SIF(s) stress intensity factor(s)
TIII

(I), TIII
(III) normalized uniform stresses

v strip of regularity in the complex plane of the
Laplace domain

W(j), WI
(j), WII

(j), WIII
(j) anti-plane displacements of jth material

WnðjÞ
2 , WnðjÞ

2;I anti-plane displacements of jth material after
applying the Mellin transform of the second kind

W̄
nðjÞ
2 , W̄

nðjÞ
2;I anti-plane displacements of jth material after

applying the Mellin transform of the second kind
and the Laplace transform

W ðjÞ
arc;L anti-plane displacement of jth material for the

studied case with Problem L (L ¼ I, II, III)
z cylindrical polar coordinate axis
r2 Laplacian operator
a apex angle of each material of the finite wedge
b loading angle of 1st material of the finite wedge
g loading angle of 2nd material of the finite wedge
d Dirac-delta function
m1, m2, mj shear moduli
y cylindrical polar coordinate axis
L problem L (L ¼ I, II, III)
j2, j1 upper and lower bounds of b loading range for the

studied case
x2, x1 upper and lower bounds of g loading range for the

studied case
trz, tyz shear stresses in the rz-direction and in the yz-direction
tðjÞrz , tðjÞrz;I, t

ðjÞ
rz;II, t

ðjÞ
rz;III shear stresses in the rz-direction of jth

material
tðjÞyz, tðjÞyz;I, t

ðjÞ
yz;II, t

ðjÞ
yz;III shear stresses in the yz-direction of jth

material
tðjÞarc rz;L shear stress in the rz-direction of jth material for the

studied case with Problem L (L ¼ I, II, III)
tðjÞarc yz;L shear stress in the yz-direction of jth material for the

studied case with Problem L (L ¼ I, II, III)
OðjÞL normalized displacement of jth material for the studied

case with Problem L (L ¼ I, II, III)
GðjÞL normalized shear stress in the rz-direction of jth

material for the studied case with Problem L (L ¼ I,
II, III)

YðjÞL normalized shear stress in the yz-direction of jth
material for the studied case with Problem L (L ¼ I,
II, III)
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problems can be obtained by integrating the derived fundamental solutions over the range of interest, as shown in Section 3. The results
are compared with those obtained from FE analyses.
2. Problem formulation and solutions

Fig. 1 shows the composite wedge, with a finite radius a, considered in this study. The apex angle of each material is a, and the shear
moduli are m1 and m2, respectively. An infinite length along the z-axis perpendicular to the plane is assumed. Accordingly, the problem
belongs to the plane deformation type. The only displacement component in the z-direction is a function relative to the in-plane
coordinates (r, y). In this study, the circular arc of the wedge (r ¼ a) is subjected to a pair of anti-plane concentrated forces, F, at angles
y ¼ b and y ¼ �g. The shear stresses on the z-axis, trz and tyz, are the remaining components in the constitutive equations, which can be
expressed as

tðjÞrz ðr; yÞ ¼ mj

@W ðjÞ
ðr; yÞ
@r

(1)

tðjÞyzðr; yÞ ¼
mj

r

@W ðjÞ
ðr; yÞ
@y

(2)

where W is the displacement in the z-axis, and j ¼ 1, 2 for the jth material.
The static equilibrium equation in the absence of body forces is

@½rtðjÞrz ðr; yÞ�
@r

þ
@tðjÞyzðr; yÞ

@y
¼ 0 (3)
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Fig. 1. Schematic view of the considered composite wedge subjected to a pair of concentrated anti-plane shear loads on a circular arc.
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By substituting Eqs. (1) and (2) into Eq. (3), the equilibrium equation can be reduced to

r2W ðjÞ
ðr; yÞ ¼ 0 (4)

where

r
2
¼
@2

@r2
þ

1

r

@

@r
þ

1

r2

@2

@y2

denotes the Laplacian operator.
The Mellin transform can be employed for solving Eq. (4). To deal with the traction boundary on the circular arc, the finite Mellin

transform of the second kind is adopted [24]:

M2½f
ðjÞ
ðr;yÞ; p� ¼ f nðjÞ2 ðp;yÞ ¼

Z a

0
ða2pr�p�1 þ rp�1Þf ðjÞðr; yÞdr (5)

where p is a complex transform parameter. The inversion formula is in the form:

M�1
2 ½f

nðjÞ
2 ðp; yÞ; r� ¼ f ðjÞðr; yÞ ¼

1

2pi

Z cþi1

c�i1
r�pf ðjÞðp; yÞdp (6)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and the constant Re[p] ¼ c defines the path of integration in the complex plane.
Applying Eq. (5) to Eq. (4) yields

d2

dy2
þ p2

 !
WnðjÞ

2 ðp; yÞ þ 2apþ1 @W ðjÞ
ða; yÞ
@r

¼ 0 (7)

provided

lim
r!0
ða2pr�pþ1 þ rpþ1Þ

@W ðjÞ
ðr; yÞ
@r

þ pða2pr�p � rpÞW ðjÞ
ðr; yÞ

" #
¼ 0 (8)

Eq. (8) can be used to define the path of the line integral Re[p] ¼ c in Eq. (6); i.e., the strip of regularity should be determined from
Eq. (8) such that the integral in Eq. (5) exists.

The prescribed boundary conditions are:

tðjÞrz ða; yÞ ¼ F½ð2� jÞdðy� bÞ þ ð1� jÞdðyþ gÞ� (9a)

W ðjÞ
ð0; yÞ ¼ 0 (9b)

where bra, gra, arp, and d denotes the Dirac-delta function.
Applying Eq. (9) to Eq. (7) with the aid of Eq. (1) gives

d2

dy2
þ p2

 !
WnðjÞ

2 ðp; yÞ þ
2Fapþ1

mj

½ð2� jÞdðy� bÞ þ ð1� jÞdðyþ gÞ� ¼ 0 (10)

Eq. (10) is an ODE with a non-homogeneous term. Mathematically, this equation has a solution which is related to a trigonometric
function that repeats periodically. Thus, this study regards the boundary-value problem of this kind as an initial-value problem.
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The Laplace transform is [24]

L½WnðjÞ
2 ðp; yÞ; s� ¼ W̄

nðjÞ
2 ðp; sÞ ¼

Z 1
0

e�syWnðjÞ
2 ðp; yÞdy (11)

where s is the transform parameter. The inverse of the Laplace transform in terms of Eq. (11) is given by

L�1
½W̄

nðjÞ
2 ðp; sÞ; y� ¼WnðjÞ

2 ðp; yÞ ¼
1

2pi

Z vþi1

v�i1
esyW̄

nðjÞ
2 ðp; sÞds (12)

where the constant Re[s] ¼ v defines the path of integration in the complex plane.
Taking the Laplace transform on both sides of Eq. (10) gives

ðs2 þ p2ÞW̄
nðjÞ
2 ðp; sÞ � sWnðjÞ

2 ðp;0Þ þ ð�1Þj
@WnðjÞ

2 ðp;0Þ

@y
¼

2Fapþ1

mj

½ðj� 2Þe�sb þ ðj� 1Þe�sg� (13)

where WnðjÞ
2 ðp;0Þ and @WnðjÞ

2 ðp;0Þ=@y are the initial boundary conditions in the Laplace domain to be determined, or the undetermined
coefficients in the Mellin domain; they can be deduced from the boundary conditions prescribed on the radial edges (i.e., boundary
conditions at y ¼7a). Detailed solutions are presented below.

2.1. Problem I: Free–free edge

Traction-free radial edges are considered in Problem I. The corresponding boundary conditions are:

tð1Þyz;Iðr;aÞ ¼ tð2Þyz;Iðr;�aÞ ¼ 0 (14a)

W ð1Þ
I ðr;0Þ ¼W ð2Þ

I ðr;0Þ (14b)

tð1Þyz;Iðr;0Þ ¼ tð2Þyz;Iðr;0Þ (14c)

where the subscript I denotes Problem I in this study. After applying the finite Mellin transform (Eq. (5)) to Eq. (14), the radial boundary
conditions are:

M2½tð1Þyz;Iðr;aÞ� ¼ M2½tð2Þyz;Iðr;�aÞ� ¼ 0 (15a)

M2½W
ð1Þ
I ðr;0Þ� ¼ M2½W

ð2Þ
I ðr;0Þ� (15b)

M2½rtð1Þyz;Iðr;0Þ� ¼ M2½rtð2Þyz;Iðr;0Þ� (15c)

To solve Eq. (13), the following coefficients are assumed based on Eqs. (15b) and (15c):

M2½W
ð1Þ
I ðr;0Þ� ¼ M2½W

ð2Þ
I ðr;0Þ� ¼ AI (16)

M2½rtð1Þyz;Iðr;0Þ� ¼ M2½rtð2Þyz;Iðr;0Þ� ¼ BI (17)

After applying Eq. (17) with the aid of Eq. (2), the following relationship is obtained:

@WnðjÞ
2;I ðp;0Þ

@y
¼

BI

mj

(18)

Substituting Eqs. (16) and (18) into Eq. (13) gives

W̄
nðjÞ
2;I ðp; sÞ ¼

s

s2 þ p2

� �
AI þ ð�1Þjþ1 1

mj

1

s2 þ p2

� �
BI þ

1

s2 þ p2

� �
2Fapþ1

mj

½ðj� 2Þe�sb þ ðj� 1Þe�sg� (19)

Applying the inverse Laplace transform (Eq. (12)) to Eq. (19) yields

WnðjÞ
2;I ðp; yÞ ¼ AI cosðpyÞ þ BI

sinðpyÞ
mjp

�
2Fapþ1

mjp

ð2� jÞHðy� bÞ sin½pðy� bÞ�
þð1� jÞHðyþ gÞ sin½pðyþ gÞ�

( )
(20)

where H is the Heaviside function. After applying Eq. (15a) with the aid of Eq. (2), the coefficients AI and BI can be solved:

AI ¼
Fapþ1 cosðpaÞfcos½pða� gÞ� � cos½pða� bÞ�g

DIðpÞ
(21)

BI ¼
Fapþ1p sinðpaÞfm1 cos½pða� gÞ� þ m2 cos½pða� bÞ�g

DIðpÞ
(22)

where

DIðpÞ ¼ pðm1 þ m2Þ sinð2paÞ (23)

The zeros of DI(p) determine the order of the stress singularity at the wedge apex. The orders of the stress singularity for bi-material
wedge problems under anti-plane shear deformation were discussed in previous studies [12,16]. The behavior of the stress singularity
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depends on the conditions of the radial edges. The characteristic functions, Eq. (23), as well as those in the following sections, obtained in
this study are identical to those in previous studies since the same conditions of radial edges are used.

By applying the inverse finite Mellin transform (Eq. (6)) in conjunction with the residue theorem, the displacement field is derived as

W ðjÞ
I ðr; yÞ ¼

2Fa

ðm1 þ m2Þp

�
X1
n¼1

2

2n� 1
Rj�1 sin

ð2n� 1Þp
2a

g
� �

þ Rj�2 sin
2n� 1ð Þp

2a
b

� �� �
sin

2n� 1ð Þp
2a

y
� �

r

a

	 
ð2n�1Þp=2a

�
1

n
cos

npg
a

	 

� cos

npb
a

� �� �
cos

npy
a

� �
r

a

	 
np=a

8>>>><
>>>>:

9>>>>=
>>>>;

(24)

where

R ¼
m1

m2

(25)

It should be noted that the path of integration for inversion integrals is within the strip of regularity Re[p]o0, but we replace
p� (negative p) by �p+ (positive p) here.

The corresponding stress fields are:

tðjÞrz;Iðr;yÞ ¼
2F

ðRþ 1Þa

�
X1
n¼1

R sin
ð2n� 1Þp

2a g
� �

þ sin
ð2n� 1Þp

2a b
� �� �

sin
ð2n� 1Þp

2a y
� �

r

a

	 
ðð2n�1Þp=2aÞ�1

�R2�j cos
npg
a

	 

� cos

npb
a

� �� �
cos

npy
a

� �
r

a

	 
ðnp=aÞ�1

8>>>><
>>>>:

9>>>>=
>>>>;

(26)

tðjÞyz;Iðr; yÞ ¼
2F

ðRþ 1Þa

�
X1
n¼1

R sin
ð2n� 1Þp

2a g
� �

þ sin
ð2n� 1Þp

2a b
� �� �

cos
ð2n� 1Þp

2a y
� �

r

a

	 
ðð2n�1Þp=2aÞ�1

þR2�j cos
npg
a

	 

� cos

npb
a

� �� �
sin

npy
a

� �
r

a

	 
ðnp=aÞ�1

8>>>><
>>>>:

9>>>>=
>>>>;

(27)

For R ¼ 1 and b ¼ g, the solution is identical to that for the anti-symmetrical problem of the single material case in Shahani [20], which
was obtained by the separation of variables.

When a ¼ p, a uniform tðjÞrz;I is found at y ¼ 0:

lim
r!0

tðjÞrz;Iðr;0Þ ¼
2FR2�j

ðRþ 1Þp ½cosðbÞ � cosðgÞ� (28)

This shows that the uniform tðjÞrz;I results from the discrepancy of the two loading angles. The following normalized expression is used
for this uniform stress:

TðIÞIII ¼
ðRþ 1Þp
2FR2�j

lim
r!0

tðjÞrz;IIIðr;0Þ (29)

where the superscript I denotes Problem I here. The TIII
(I) distribution for g versus b is plotted in Fig. 2. If b ¼ g and y ¼ 0, TIII

(I) is reduced to
zero, and so are tðjÞrz;I and W ðjÞ

I . This implies that if b ¼ g, the composite material problem can be regarded as two single material problems
for which the interface is fixed.

The following SIF definition is used for an interfacial crack problem in this study:

K ðLÞIII ¼ lim
r!0

ffiffiffiffiffiffi
2p
p

r1�p1;LtðjÞyz;Iðr;0Þ (30)

where L ¼ I, II and III for Problems I, II, and III, respectively. P1,L is the smallest positive root for DL(p) ¼ 0.
The SIF of Problem I (a ¼ p) is

KðIÞIII ¼
2F

ðRþ 1Þ

ffiffiffiffiffiffi
2a

p

r
R sin

g
2

h i
þ sin

b
2

� �� �
(31)

The normalized SIF for Problem I can be defined by

HðIÞIII ¼
K ðIÞIIIðRþ 1Þ

2F

ffiffiffiffiffiffi
p
2a

r
(32)

The HIII
(I) distributions for g versus b with R ¼ 0.1, 1, and 10 are plotted in Fig. 3. It can be seen that b dominates the magnitude of HIII

(I) for
R ¼ 0.1 and that g dominates the magnitude of HIII

(I) for R ¼ 10. This indicates that the loading angle of a stiffer material has a lesser effect
on SIF. In addition, b and g contribute equally to HIII

(I) for R ¼ 1, as expected.
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Fig. 2. TIII
(I) distribution for g versus b in Problem I.

Fig. 3. HIII
(I) distributions for g versus b in Problem I. (a) R ¼ 0.1, (b) R ¼ 1, (c) R ¼ 10.

C.-H. Chen et al. / International Journal of Mechanical Sciences 51 (2009) 583–597588
2.2. Problem II: Free–fixed edge

The considered boundary conditions in the Mellin domain for Problem II are:

M2½tð1Þyz;IIðr;aÞ� ¼ M2½W
ð2Þ
II ðr;�aÞ� ¼ 0 (33a)

M2½W
ð1Þ
II ðr;0Þ� ¼ M2½W

ð2Þ
II ðr;0Þ� ¼ AII (33b)
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M2½rtð1Þyz;IIðr;0Þ� ¼ M2½rtð2Þyz;IIðr;0Þ� ¼ BII (33c)

where the subscript II denotes Problem II in this study. Similar to Problem I, the coefficients in the Mellin domain for Problem II are
determined:

AII ¼
2Fapþ1fcosðpaÞ sin½pða� gÞ� � sinðpaÞ cos½pða� bÞ�g

DIIðpÞ
(34)

BII ¼
2Fapþ1pfm1 sinðpaÞ sin½pða� gÞ� � m2 cosðpaÞ cos½pða� bÞ�g

DIIðpÞ
(35)

where

DIIðpÞ ¼ p½m1 sin2
ðpaÞ � m2cos2ðpaÞ� (36)

The displacement field is derived as

W ðjÞ
II ðr; yÞ ¼

X1
n¼1

2Fa

D0IIðpÞ

sinðpaÞ cos½pða� bÞ�
� cosðpaÞ sin½pða� gÞ�

( )
cosðpyÞ

�
Rj�1 sinðpaÞ sin½pða� gÞ�
�Rj�2cosðpaÞ cos½pða� bÞ�

( )
sinðpyÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

r

a

	 
p

2
666664

3
777775

p¼pn;II

(37)

where

D0IIðpÞ ¼ paðm1 þ m2Þ sinð2paÞ (38)

pn;II ¼
1

a
tan�1

ffiffiffi
1

R

r !
þ ðn� 1Þp

" #
for n ¼ 1;3;5; . . . (39a)

pn;II ¼
1

a
np� tan�1

ffiffiffi
1

R

r !" #
for n ¼ 2;4;6; . . . (39b)

Note that D0II(pn,II)a0 can be obtained if D0II(pn,II) ¼ 0. The corresponding stress fields are:

tðjÞrz;IIðr;yÞ ¼
X1
n¼1

2Fpmj

D0IIðpÞ

sinðpaÞ cos½pða� bÞ�
� cosðpaÞ sin½pða� gÞ�

( )
cosðpyÞ

�
Rj�1 sinðpaÞ sin½pða� gÞ�
�Rj�2 cosðpaÞ cos½pða� bÞ�

( )
sinðpyÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

r

a

	 
p�1

2
666664

3
777775

p¼pn;II

(40)

tðjÞyz;IIðr; yÞ ¼
X1
n¼1

�2Fpmj

D0IIðpÞ

sinðpaÞ cos½pða� bÞ�
� cosðpaÞ sin½pða� gÞ�

( )
sinðpyÞ

þ
Rj�1 sinðpaÞ sin½pða� gÞ�
�Rj�2 cosðpaÞ cos½pða� bÞ�

( )
cos pyð Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

r

a

	 
p�1

2
666664

3
777775

p¼pn;II

(41)

The smallest admissible order of stress for Problem II is 1=a tan�1ð
ffiffiffiffiffiffiffiffiffi
1=R

p
Þ � 1. For R ¼ 1 and a ¼ 1/2p (the case of a single material with

a crack), the square-root singularity is recovered.
Using the definition in Eq. (30), the SIF of Problem II (a ¼ p) is

K ðIIÞIII ¼
Fa1�p1;II

ðRþ 1Þ

ffiffiffiffi
2

p

r
f
ffiffiffi
R
p
½cosðp1;IIbÞ � cosðp1;IIgÞ� þ sinðp1;IIbÞ þ R sinðp1;IIgÞg (42)

where p1;II ¼ 1=ptan�1
ffiffiffiffiffiffiffiffiffi
1=R

p� �
. The normalized SIF for Problem II can be defined by

HðIIÞIII ¼
K ðIIÞIII ðRþ 1Þ

Fa1�p1;II

ffiffiffiffi
p
2

r
(43)

The HIII
(II) distributions for g versus b with R ¼ 0.1, 1, and 10 are plotted in Fig. 4. The figure shows that increasing b has little effect on HIII

(II)

for constant g when R ¼ 10. If m1bm2, HIII
(II) is reduced to a function with respect to g.

2.3. Problem III: Fixed–fixed edge

The considered boundary conditions for Problem III are:

M2½W
ð1Þ
III ðr;aÞ� ¼ M2½W

ð2Þ
III ðr;�aÞ� ¼ 0 (44a)

M2½W
ð1Þ
III ðr;0Þ� ¼ M2½W

ð2Þ
III ðr;0Þ� ¼ AIII (44b)

M2½rtð1Þyz;IIIðr;0Þ� ¼ M2½rtð2Þyz;IIIðr;0Þ� ¼ BIII (44c)
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Fig. 4. TIII
(II) distributions for g versus b in Problem II. (a) R ¼ 0.1, (b) R ¼ 1, (c) R ¼ 10.
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where the subscript III denotes Problem III in this study. Similar to Problem I, the coefficients in the Mellin domain for Problem III are
determined:

AIII ¼
Fapþ1 sinðpaÞfsin½pða� bÞ� � sin½pða� gÞ�g

DIIIðpÞ
(45)

BIII ¼
Fapþ1p cosðpaÞfm1 sin½pða� gÞ� þ m2 sin½pða� bÞ�g

DIIIðpÞ
(46)

where

DIIIðpÞ ¼ pðm1 þ m2Þ sinð2paÞ (47)

Eq. (47) is equal to Eq. (23), so the order of the stress singularity is the same as that in Problem I.
The displacement and stress fields are derived as

W ðjÞ
IIIðr; yÞ ¼

2Fa

ðm1 þ m2Þp

�
X1
n¼1

2

2n� 1
cos
ð2n� 1Þp

2a b
� �

� cos
ð2n� 1Þp

2a g
� �� �

cos
ð2n� 1Þp

2a y
� �

r

a

	 
ð2n�1Þp=2a

þ
1

n
Rj�1 sin

npg
a

	 

þ Rj�2 sin

npb
a

� �� �
sin

npy
a

� �
r

a

	 
np=a

8>>>><
>>>>:

9>>>>=
>>>>;

(48)

tðjÞrz;IIIðr; yÞ ¼
2F

ðRþ 1Þa

�
X1
n¼1

R2�j cos
ð2n� 1Þp

2a
b

� �
� cos

ð2n� 1Þp
2a

g
� �� �

cos
ð2n� 1Þp

2a
y

� �
r

a

	 
ðð2n�1Þp=2aÞ�1

þ R sin
npg
a

	 

þ sin

npb
a

� �� �
sin

npy
a

� �
r

a

	 
ðnp=aÞ�1

8>>>><
>>>>:

9>>>>=
>>>>;

(49)
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Fig. 5. TIII
(III) distributions for g versus b in Problem III. (a) R ¼ 0.1, (b) R ¼ 1, (c) R ¼ 10.

Fig. 6. Studied case with a pair of shear pressures.
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tðjÞyz;IIIðr; yÞ ¼
�2F

ðRþ 1Þa

�
X1
n¼1

R2�j cos
ð2n� 1Þp

2a b
� �

� cos
ð2n� 1Þp

2a g
� �� �

sin
ð2n� 1Þp

2a y
� �

r

a

	 
ðð2n�1Þp=2aÞ�1

� R sin
npg
a

	 

þ sin

npb
a

� �� �
cos

npy
a

� �
r

a

	 
ðnp=aÞ�1

8>>>><
>>>>:

9>>>>=
>>>>;

(50)

If b ¼ g and y ¼ 0, tðjÞrz;III and WIII
(j) are reduced to zero, which is similar to the results obtained in Problem I. In this case, the problem can

be regarded as two single material problems for which both radial edges are fixed.
When a ¼ p, a uniform tðjÞyz;III is found at y ¼ 0 as

lim
r!0

tðjÞyz;IIIðr;0Þ ¼
2F

ðRþ 1Þp ½R sinðgÞ þ sinðbÞ� (51)

The following normalized expression is used for this uniform stress:

TðIIIÞIII ¼
ðRþ 1Þp

2F
lim
r!0

tðjÞyz;IIIðr;0Þ (52)

The TIII
(III) distributions for g versus b with R ¼ 0.1, 1, and 10 are plotted in Fig. 5. Symmetric behavior of TIII

(III) can be observed for
0rbr901 and 901rbr1801 with R ¼ 0.1; and for 0rgr901 and 901rgr1801 with R ¼ 10. The loading angle of the softer material
dominates the magnitude of TIII

(III).
Using the definition in Eq. (30), the SIF for this problem is

K ðIIIÞIII ¼ 0 (53)

KIII
(III)
¼ 0 because the traditional definition of SIF, Eq. (30), is according to the radial direction parallel to crack surfaces. Nonetheless,

it should be noted that a singular tðjÞyz;III occurs in directions other than y ¼ 0.
Fig. 7. Finite element meshes used for the case shown in Fig. 6.
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3. A case study

In this section, a case with a pair of anti-plane shear pressures, P, shown in Fig. 6, is studied. The solutions for this case can be obtained
by integrating the fundamental solutions (derived in Section 2) with respect to the loading range as

W ðjÞ
arc;Lðr;yÞ ¼

Z g¼x2

g¼x1

Z b¼j2

b¼j1

W ðjÞ
L ðr;yÞdbdg (54a)

tðjÞarc rz;Lðr; yÞ ¼
Z g¼x2

g¼x1

Z b¼j2

b¼j1

tðjÞrz;Lðr; yÞdbdg (54b)

tðjÞarc yz;Lðr; yÞ ¼
Z g¼x2

g¼x1

Z b¼j2

b¼j1

tðjÞyz;Lðr; yÞdbdg (54c)

where x2�x1 ¼ j2�j1, and L ¼ I, II, and III for Problems I, II, and III, respectively.
The explicit results are given in Appendix. Finite element results are used to compare the derived solutions. The FE program ANSYS

was employed to compute displacement and stress solutions of a special case. The following geometric parameters were assumed: a ¼ 1,
a ¼ 601, j1 ¼ 451, j2 ¼ 601, x1 ¼ 301, and x2 ¼ 451; material constants: m1 ¼ 4e9 and m2 ¼ 8e9; and arc line loads: P ¼ 1e6. A 3-D model
with 8616 twenty-node isoparametric brick elements was used. Only one degree of freedom in the z-direction (the in-plane degrees of
freedom were set to zero) was considered for modeling. The FE mesh is shown in Fig. 7. Surface loads were applied parallel to the
z-direction on the area of the arc plane from y ¼ j1 to y ¼ j2 and from y ¼ �x1 to y ¼ �x2. Since the in-plane degrees of freedom
were fixed, a uniform outcome in the z-direction was expected (each depth has the same outcome). To compare the results in a more
Fig. 8. Normalized solutions of the studied case compared with FE results for Problem I.
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general form, we defined normalized expressions for the displacement and stresses as

OðjÞL ¼
ðm1 þ m2Þ

Paa W ðjÞ
arc;Lðr; yÞ (55a)

GðjÞL ¼
ðRþ 1Þ

P
tðjÞarc rz;Lðr; yÞ (55b)

YðjÞL ¼
ðRþ 1Þ

P
tðjÞarc yz;Lðr;yÞ (55c)

It should be noted that the multiplier for the normalization is the constant obtained after integration in Eq. (54).
The FE results for Problems I, II, and III are compared with the analytical solutions (expanding Eq. (55) to 10,000 terms)

in Figs. 8–10. Good agreement is achieved. Except for some critical locations for which FE fails to predict the correct
stress fields, the discrepancy is well below 1%. These results verify that the fundamental solution derived in this study is appropriate
and reliable.
4. Conclusions

Problems of composite finite wedges under anti-plane shear applied on a circular arc were solved using the finite Mellin transform in
conjunction with the Laplace transform. The full-field solutions of displacements and stresses for various boundary edges, namely,
free–free, free–fixed, and fixed–fixed, were derived explicitly. The SIF distributions of three considered problems for composite circular
shafts with an interfacial crack are presented and discussed. For loads applied at equal angles, free–free and fixed–fixed edge problems
can be degenerated into single material problems. Uniform stresses were found along the interface in free–free and fixed–fixed edge
problems. A case with general loads was calculated and the results compared well with those obtained from FE analyses. The derived
fundamental solutions can be used for further investigations.
Fig. 9. Normalized solutions of the studied case compared with FE results for Problem II.
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Appendix A. Explicit solutions for the studied case

For Problem I (free–free edge):

W ðjÞ
arc;Iðr; yÞ ¼

Paa
ðm1 þ m2Þ

X1
n¼1

X2

‘¼1

2ð�1Þ‘þ1

p2

2

2n� 1

� �2 Rj�1 cos
ð2n� 1Þp

2a
x‘

� �

þRj�2 cos
ð2n� 1Þp

2a j‘

� �
8>>><
>>>:

9>>>=
>>>;

sin
ð2n� 1Þp

2a
y

� �
r

a

	 
ð2n�1Þp=2a

þ
1

n

� �2

sin
npx‘
a

� �
� sin

npj‘

a

	 
� �
cos

npy
a

� �
r

a

	 
np=a

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(A.1)

tðjÞarc rz;Iðr; yÞ ¼
P

ðRþ 1Þ

X1
n¼1

X2

‘¼1

2ð�1Þ‘þ1

p

2

2n� 1

� � Rcos
ð2n� 1Þp

2a x‘
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2a
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>>>:
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>>>;
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(A.2)

tðjÞarc yz;Iðr;yÞ ¼
P

ðRþ 1Þ

X1
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2ð�1Þ‘þ1
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2a x‘
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(A.3)
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For Problem II (free–fixed edge):

W ðjÞ
arc;IIðr;yÞ ¼

Pa

ðm1 þ m2Þ

X1
m¼1

X2

‘¼1

2ð�1Þ‘þ1

p2
ma sinð2pmaÞ

sinðpmaÞ sin½pmða�j‘Þ�

þ cosðpmaÞ cos½pmða� x‘Þ�

( )
cosðpmyÞ

þ
Rj�1 sinðpmaÞ cos½pmða� x‘Þ�

þRj�2 cosðpmaÞ sin½pmða�j‘Þ�

( )
sinðpmyÞ

8>>>>><
>>>>>:
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>>>>>;

r

a

	 
pm

(A.4)

tðjÞarc rz;IIðr; yÞ ¼
Pa

ðRþ 1Þ
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tðjÞarc yz;IIðr; yÞ ¼
Pa
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(A.6)

where

pm ¼

pm¼2n�1 ¼
1

a tan�1

ffiffiffi
1

R

r !
þ ðn� 1Þp

" #
;

pm¼2n ¼
1

a np� tan�1

ffiffiffi
1

R

r !" #
;

8>>>>><
>>>>>:

n 2 N (A.7)

For Problem III (fixed–fixed edge):

W ðjÞ
arc;IIIðr;yÞ ¼
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(A.10)
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