Application of Hydrogeological Investigation to Determine Groundwater Modeling Approach in Taiwan Mountainous Region

Acknowledgements

Sinotech Engineering Consultants, Inc.

- H. C. Lo, P. Y. Chou and W. L. Lee
- Taiwan Central Geological Survey
 - Y. T. Lin, C. C. Huang and S. Y. Wang
 - Give founds for support

Introduction(2/2)

* The physical properties of geologic materials of the subsurface system which control the storativity and ability of fluids to move through them must be considered.

Study Objective

* By means of various hydrogeological tests at both field and laboratory scale, we determine applicable models for every corresponding subsurface system at the basins of Mid-Jhuoshuei River and Beigang River in Taiwan Mountainous Region.

Regional Hydrogeological Drilling

				-	
Stratigraphy	Geologic Age	Area (ha)	Percent (%)	Site	
Colluvium	Pleistocene	7613	5.1	1	
Toukoshan Formation Houyenshan Member (Tkh)	Holocene	6827	4.6	2	
Toukoshan Formation Hsiangshan Member (Tks)	Holocene	11899	8.0	3	
Cholan Formation (Cl)	Pliocene-Pleistocene	7475	5.0	1	
Kueichulin Formation Tawo Sandstone Member (Kct)	Miocene-Pliocene	17409	11.6	4	
Kueichulin Formation Kuantaoshan Sandstone Member(Kck)	Miocene-Pliocene	14567	9.7	2	
Nanchuang Formation(Nc)	Miocene	20211	13.5	2	
Shenkeng Sandstone(Sk)	Miocene	3457	2.3	2	
Changhukeng Shale(Ch)	Miocene	3073	2.1	2	
Hoshe Formation(Hs)	Miocene	5524	3.7	1	
Shuichangliu Formation(Sc)	Oligocene	2999	2.0	1	
Paileng Formation(PI)	Eocene-Oligocene	11072	7.4	2	
Tachien Shale(Tc)	Eocene	6841	4.6	1	
Shihpachunghsi Formation(Sp)	Eocene	8008	5.4	2	

Laboratory tests

Test Categories	Purposes	
Physical Properties Test of Soil and Rock	Grain size distribution; Specific gravity Unit weight	
Tri-axial Permeability Test	Permeability (Soil)	
Gas Permeability Test	Permeability (Rock)	
Mercury and Helium Porosimeter Test	Porosity	
Laser Particle Size Analyzing Test	Particle size distribution for unconsolidated rocks	
Petrographic Analysis (Thin Section Analysis)	Petrographic description, including grain size, sorting, porostiy, mineral abundances, etc.	
X-ray Diffraction Test	Semi-quantitative determination of sample mineralogy	

Conclusions

➢Hydraulic conductivity, storativity, and porosity on different geological formations have been revealed. The aforementioned results regarding the hydrogeological properties can be utilized to classify the study area into three types of groundwater conceptual models or hybrid model.

The map also presents spatially different flow characteristics leading to the further study of groundwater availability.

► Based on a large scale, this work gives an advantage in selecting an appropriate model for modeling groundwater problems.

