

Characterisation of Fracture Permeability in mid-Taiwan Mountainous Region:

by

Po-Yi Chou Chun-Te Wang Hung-Chieh Lo and Shih-Meng Hsu

Project outline and specific research focus

- How to identify fractures that are **significant hydraulic conductors** ?
- What **factors** govern flow and transport in such fractured system ?
- How can changes in this fractured system be quantified ?

Where is the probable conductive pathway of ground-water ?

Procedure of in-situ downhole investigation

Checklist for quick identification of conductive pathway

Target zone could be dominated by coarse-grained rock where is...

- I. Low in gamma-ray response in contrast to the average
- II. High in short normal-resistivity relatively to the long one
- III. Longer sonic travel-time, and/or larger porosity (acoustic-velocity derived)
- IV. Discernible openings confirmed by televiewer imaging

Thecklist for identification of conductible segments in borehole					
Depth of interval	Criterion				Predominate lithologic type
	1	11	111	IV	\$ 71
15.9m to 17.4m	0	0	0	0	regolith (saprock)
24.0m to 25.5m	x	\circ	\circ	0	shale
32.7m to 34.2m	x	0	0	0	sandstone/shale interbedding
43.9m to 45.4m	×	х	×	0	sandstone/shale interbedding
64.7m to 66.2m	0	0	×	0	sandstone
72.5m to 74.0m	0	х	\bigcirc	х	sandstone (mud-filled)
82.5m to 84.0m	×	х	×	х	sandstone (mud-filled)

■ 大地工程研究中心 GERC RESEARCH CENTER

Determination of formation permeability by packer-test

Real-time monitoring system developed by Sinotech

Hydraulic conductivity (K) vs. Depth

Hydraulic conductivity (on a logarithmic scale) with respect to different types of rock against depth

9

Hydraulic conductivity (K) vs. Porosity and Aperture

Vm

Hydraulic Conductivity v.s.

1. Porosity (intra-aggregate pores) obtained from sonic log

 Aperture ratio (<u>inter-aggregate void</u>) defined as fracture spacing / sealed-off interval between packers, 1.5 m)

 $\Delta t = - =$

VL

- 3. Porosity x Aperture ratio
- 4. Porosity x (Aperture ratio)³

Comparison of criteria for identifying conductive fracture

Conclusions and outlooks

- How to identify fractures that are significant hydraulic conductors ?
- → It is necessary, and sufficient, to jointly consider lithologic characteristics and fracture related properties.
- What **factors** govern flow and transport in such fractured systems ?
- → The flow of groundwater in the mountain area is proportionally regulated by the intra-aggregate pores and the inter-aggregate voids (aperture).
- How can changes in this fractured system be quantified ?
- → <u>A simple linear relationship was obtained between K</u> and Porosity x (Aperture ratio)3.

Thank you for your listening

Acknowledgment

Financial Support
Central Geological Survey, MOEA

Technical Support
Shinn-Yang Engineering Service Co., Ltd
Horng-Shiu Engineering Service Co., Ltd

