

Estimation of Hydraulic Conductivity in Montane Regions of Taiwan

presented to AOGS 2011

Cheng Yu Ku¹, Shih Meng Hsu², Chien-Chung Ke², Yen Tsu Lin³, Chi Chao Huang³, Yun Shuen Wang³

¹ National Taiwan Ocean University, Taiwan
 ² Sinotech Engineering Consultants, Inc., Taiwan
 ³ Central Geological Survey, MOEA, Taiwan, R.O.C.

August 2011

Problem Significance

- Discontinuous Nature of Rock Masses in Taiwan
 - fissures, cleavages, beddings, joints, and faults are prominent
 - Thousands of earthquakes each years may induce faults movement
 - Highest precipitation reaches 6000 mm
 - Average rainfall is 2483 mm
 - Providing sufficient groundwater recharge
 - Rockmass is very young in geological time scale
- Groundwater Resource

3

 With abundant recharge, groundwater may be one of most important water resources in Taiwan.

Problem Significance BH-07岩心照片(0~40公尺) BH-07岩心照片(41~60公尺)

Measurement of rock mass hydraulic conductivity

Measurement of rock mass hydraulic conductivity

- Hydrogeology:
 - Piezometric mapping
 - Aquifer testing
 - Conductivity, etc.
 - →Hydrogeologic Model
 - **Double packer systems** are the most commonly used tools for hydrogeological testing in boreholes for fracture rocks.
 - They can be used to determine the hydraulic property in a section of borehole based on two inflatable packers. It is now recognized that this approach is appropriate to investigate the variability of a borehole as it intersects various hydrogeological units.

Measurement of rock mass hydraulic conductivity

9 9

Problem Significance

Fig. 2(b). Rock core photos of borehole CH-04 without fault influence.

Location of major faults and four boreholes for this study in Taiwan

Estimation of Hydraulic Conductivity

Empirical equations

- An empirical relation
 proposed by Louis (1967)
 from field measurements
 indicates that the rock
 mass hydraulic
 conductivity decreases
 with the depth by an
 exponential formula.
- A numerical study conducted by Wei and others based on rock fracture network simulation (Wei and Hudson, 1988;Wei et al., 1995) suggested that the hydraulic conductivity decreases with depth and is proportional to the depth cubed.

Equation	Reference				
$k = az^{-b}$	Black (1987) a and b are constants, z is the vertical depth below the groundwater surface.				
$\log K = -8.9 - 1.671 \log Z$	Snow (1970) K (ft ²) is the permeability. z (ft) is the depth.				
$K = 10^{-(1.6\log z + 4)}$	Carlson and Olsson (1977) K (m/s) is the hydraulic conductivity. z (m) is the depth.				
$K = K_s e^{(-Ah)}$	Louis (1974) K (m/s) is the hydraulic conductivity. K_s is the hydraulic conductivity near ground surface. h (m) is the depth. A is the hydraulic gradient.				
$\log K = 5.57 + 0.352 \log Z$ $- 0.978 (\log Z)^2 + 0.167 (\log Z)^3$	Burgess (1977) K (m/s) is the hydraulic conductivity. Z (m) is the depth.				
$K = K_i [1 - Z / (58.0 + 1.02Z)]^3$	Wei et al. (1995) Z is the depth. K is the hydraulic conductivity. K_s (m/s) is the hydraulic conductivity near ground surface.				
able 1 Diverse approximations for estimating rock mass hydraulic conductivity					

11

Estimation of Hydraulic Conductivity Empirical equations

 Relationship between hydraulic conductivity and depth
 Rock mass hydraulic conductivity (m/sec)

Estimation of Hydraulic Conductivity

Empirical equations

- The empirical model for estimating hydraulic conductivity of highlydisturbed clastic sedimentary rocks in Taiwan
 - An attempt to find the decrease in permeability with depth was conducted. The results, however, are very scatterd.
 - Potential factors
 - Rock Quality Designation (RQD)
 - Depth Index (DI)
 - Gouge Content Designation (GCD)
 - Lithology Permeability Index (LPI)
 - that may affect the degree of permeability should be considered.

 $RQD = \frac{\sum Length of Intact and Sound Core Pieces > 100 mm}{Total Length of Core Run, mm} \times 100\%$

$$=\frac{R_S}{R_T} \times 100\%$$

13

Estimation of Hydraulic Conductivity Empirical equations

• Depth Index (DI)

$$DI = 1 - \frac{L_c}{L_T}$$

- $-L_T$ is the total length of a borehole;
- L_c is a depth which is located at the middle of a double packer test interval in the borehole.
- The value of DI is always greater than zero and less than one. The greater the DI value, the higher the permeability
- Gouge Content Designation (GCD)

$$\text{GCD} = \frac{R_G}{R_T - R_S}$$

- $-R_G$ is the total length of gouge content.
- The value of GCD is always greater than zero and less than one.
- The greater GCD value stands for the more gouge content in a core run,
 and thereby it will reduce the permeability.

Estimation of Hydraulic Conductivity Empirical equations

- Rock mass permeability index, called the HC index • HC = (1 - RQD)(DI)(1 - GCD)(LPI)
- HC-value based on 22 hydraulic test data

Boreholes	Test intervals (m)	1-RQD	DI	1-GCD	LPI	HC	K (m/s)
HB-94-01	34.7-36.3	0.094	0.677	1.000	1.000	0.0635	7.06E-08
	36.4-38.0	0.438	0.662	1.000	1.000	0.2895	1.64E-06
	56.7-58.3	0.063	0.477	1.000	0.950	0.0283	1.53E-08
	74.6-76.2	0.500	0.315	1.000	0.400	0.0629	5.3E-08
	77.2-78.8	0.010	0.291	1.000	0.400	0.0012	4.22E-10
	82.6-84.2	0.125	0.242	1.000	0.400	0.0121	2.31E-09
	90.2-91.8	0.010	0.173	1.000	0.400	0.0007	2.86E-10
	94.2-95.8	0.500	0.136	1.000	0.400	0.0273	4.53E-09
HB-95-01	99.0-101.9	0.345	0.598	0.200	0.400	0.0165	9.8E-09
	117.2-120.1	0.690	0.526	1.000	0.850	0.3081	9.76E-07
	133.2-136.1	0.724	0.461	0.286	1.000	0.0954	4.68E-08
HB-95-02	88.6-91.4	0.071	0.743	1.000	0.600	0.0318	1.56E-07
	96.0-99.2	0.031	0.721	1.000	0.600	0.0135	2.42E-08
	118.5-121.7	0.219	0.657	0.071	0.700	0.0072	1.36E-09
	134.8-138.0	0.344	0.610	0.727	0.700	0.1068	1.17E-07
	154.8-158.0	0.938	0.553	0.103	0.700	0.0376	1.99E-08
	173.0-176.2	0.938	0.501	0.103	0.700	0.0340	9.08E-09
	189.8-193.0	0.594	0.453	1.000	0.700	0.1883	1.01E-06
	196.6-199.8	0.563	0.434	0.500	1.000	0.1220	6.00E-08
	213.2-216.0	0.679	0.387	1.000	1.000	0.2625	4.54E-07
	249.0-251.8	0.393	0.285	0.091	0.700	0.0071	4.03E-09
	272.0-274.8	0.214	0.219	1.000	0.700	0.0328	3.36E-08

Estimation of Hydraulic Conductivity Empirical equations

An empirical model for estimating hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan 1E-5

Estimation of Hydraulic Conductivity

Empirical equations

Correlation between K_{in-situ} and K_{HC} model

 Another borehole data with the drilling depth of 120 m is adopted to verify the empirical HC model. The principal lithologic units of the borehole, namely CH-04, are mainly sandstone, shale, and sandstone with some thin shale

Correlation between Groundwater Elevation and Ground elevation

 $R^2 = 0.99605$

Application of the HC Model

Application of the HC Model

Conclusions

- This study proposes an empirical model for estimating rock mass hydraulic conductivity using data collected for highly disturbed clastic sedimentary rocks in Taiwan.
 - The measurement of rock mass hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan has be successfully performed using the data of BHTV and double packer hydraulic tests.
 - The field results indicated that the rock mass in the study area has the conductivity between the order 10⁻¹⁰ and 10⁻⁶ m/s at the depth between 34 m and 275 m below ground surface.
 - The results demonstrate that the rock mass hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan mainly depends on the following four parameters: RQD, DI, GCD, and LPI.

