Local-Scale Groundwater Modeling of Fractured Rock Aquifer in Mid-Taiwan Mountainous Region

Sinotech Engineering Consultants, Inc. 🛛 🐼 Central Geological Survey, MOEA

Presented by Chien-Chung Ke

Co-author: Wong-Rui Lee, Jung-Jun Lin, Shih-Meng Hsu, Yen-Tsu Lin, Chi-Chou Huang

Contents

- I Introduction
- II Study area
- **III** Field investigation results
- IV Numerical model
 - Analysis results
 - Summary

VI

AOGS 2011 INTRODUCTION

AOGS 2011 / I. Introduction ••• Introduction •••

AOGS 2011 / I. Introduction ••• Introduction •••

Objectives of this study:

- To combine the use of geological and borehole geophysical investigation with hydraulic test to develop a hybrid discrete fracture network (DFN)/equivalent porous medium (EPM) to model groundwater flow in fractured rock aquifer of mountainous region.
- To evaluate the potential groundwater resources in the regolith-bedrock interconnection zones.
- To analyze the fracture connectivity between boreholes and regolith-bedrock interconnected fracture zones of specific site in the mountainous region.

AOGS 2011/ II. Study area

- Location: Mid-stream of Jhuoshuei river
- Area: 2.7 km²
- Annual precipitation : 2125mm
- Thrust fault
 - Upthrow block: Sp and Tc Formation
 - Downthrow block: Pl

– Strike/Dip: N10E/77E

財團法人中興工程願問社 Sinotech Engineering Consultants, Inc. 經濟部中央地質調查所 Central Geological Survey, MOEA

9

AOGS 2011 FIELD INVESTIGATION

AOGS 2011/ III. Field investigation

••• Field investigation techniques •••

- Outcrop investigation: to obtain the fracture geometry parameter and its statistical characteristic of each formation.
- Hydrogeological drilling: to obtain the lithology and regolith thickness of each borehole.
- Geophysical logging: to obtain the fracture orientation, spacing and aperture of each borehole.
- Ground-water monitoring well construction: to obtain the fluctuation of ground-water table and aquifer characteristic.

- Aperture: Lognormal distribution

48.25

Dili 3

0.6

K(Hydraulic conductivity): 10⁻⁸~10⁻⁵)

AOGS 2011 NUMERICAL MODEL

AOGS 2011/ IV. Numerical model

Model Type Selection

Criteria

- Lithology
- Permeability
- Porosity
- Number of fractures

Model types

EPM

財團法人中興工程原問社 Sinotech Engineering Consultants, Inc.

- Discrete Fracture Network (DFN)
- Dual Porosity Model (DPM)
- Equivalent Porous Media (EPM)

DPM

higher hydraulic conductivity, smaller porosity and greater n umber of fractures

Because of complexity of geological conditions in fault zone, it is difficult to realize the effect of faults on groundwater flow behavior using single numerical model.

AOGS 2011/ IV. Numerical model Model Developed Process 3D Surface

AOGS 2011 ANALYSIS RESULTS

AOGS 2011/ V. Analysis results

•••Potential Groundwater Resources •••

- Potential ground water storage is about <u>112,500</u> m³.
- Minimum available ground water (between regolith and fractured bedrock) is about <u>54,900</u> m³.

財團法人中興工程願問社 Sinotech Engineering Consultants, Inc. 經濟部中央地質調查所 Central Geological Survey, MOEA

AOGS 2011/ V. Analysis results

•••Analysis of fracture connectivity•••

- 1. Preferential flow-pathway may exist between BH-10, BH-12 and BH-13.
- 2. No connection is found between BH(W)-11 and BH-10 because of the low permeability of Dili fault.

Dili fault: a barrier of flow-blocking layer !?

AOGS 2011/ VI. Summary

··· Summary ···

A specific hybrid layered DFN/EPM for mountainous region in Taiwan was developed with boreholes geophysical logging data, hydraulic test data and outcrop investigation results.

The potential ground-water storage capacity of regolith-bedrock interconnection zone can be evaluated.

The preferential flow pathway between boreholes and the fracture connectivity cross the fault zone can be identified.

1

