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Abstract. Analytical expressions of the mode III interfacial stress intensity factor are 
derived for the edge-cracked problems in bonded semicircles and strips. The results are 
extracted from the solutions of the bonded finite sector by the conformal mapping method. 
Based on the method, the stress intensity factors for the problems with various crack lengths 
are achieved, and two corresponding cases are presented and discussed. The obtained 
solutions can serve as a reference for related crack problems.  

Keywords: crack, stress intensity factor, out-of-plane shear, mode III. 

1. Introduction. Stress intensity factor (SIF) is one of the important parameters used for 
analyzing a crack problem. Many studies have been devoted to extracting the SIFs for the 
crack problems of bonded materials under out-of-plane shear (e.g., Choi et al., 1994; Lee 
and Earmme, 2000; Li, 2001; Wu and Dzenis, 2002; Shahani, 2003). Finite or semi-infinite 
cracks lying on the bonded interface were considered in the previous studies. However, the 
interface used was semi-infinite or infinite. In practice, the length of the bonded interface 
can be finite, and the crack usually occurs at the edge of the bonded interface. Therefore, the 
analytical analyses of crack problems with a finite-length bonded interface cannot be 
neglected. Recently, Chen et al. (2009, 2012) have studied the problems of a crack lying on 
and terminated at the finite-length bonded interface. Based on the results, this study aims to 
extract the SIF solutions by the conformal mapping method for two edge-cracked bonded 
problems in which the crack length is variable with respect to the finite-length interface. 
Analytical SIF expressions for the two problems for the respective cases are presented and 
discussed. The obtained results can be used as reference data for related crack problems and 
serve as a reference for designing the mode III interfacial fracture toughness tests.  

2. Interfacial stress intensity factor of a mode III edge crack between two bonded 
semicircles. Chen et al. (2009) obtained explicit solutions for the bonded finite sectors 
under out-of-plane shear. In the case with the apex angle of 2π, the problem reduces to that 
in Fig. 1 (b), and the stress component (1)

zθτ  of material 1 reduces to 
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(1) 
where  R=μ1/μ2 and μ1  and μ2 denote the shear moduli of the two materials. 
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Figure 1. A bonded semicircle containing an edge crack: (a) a(1-h); (b) a in length. 

With some manipulation, Eq. (1) may be written as the real part of a complex analytic 
function in the  ω2-plane as 
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Notice that  2
ire θω = . 

As shown in Fig. 1, the conformal mapping 
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(3) 
where  1 1h− < < , will map the region in Fig. 1(a) onto the region in Fig. 1(b). 
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The complex function ( )2ω′Λ  can be expressed in terms of the complex variable 1ω  in the 

1ω -plane as 
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(4) 
It is noted that the relation Eq. (3) should be applied to Eq. (4), along with the following 
relationships: 
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(5) 
where ζ  and η  are the respective loading angles applied to materials 1 and 2 in the problem 
of Fig. 1(a). 
Thus, the interfacial SIF in the problem of Fig. 1(a) can be derived using the definition 
(Hellan, 1984): 
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and this results in 
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(8) 
For the case with 0h = , the SIF reduces to 
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which is identical to the result obtained by Chen et al. (2009). 
For the case with ζ η=  (i.e., the same loading angles), the SIF reduces to 

   ( ) 2 2
III 1 2 1 1 1K s s a b a= + + − ,      

(10) 
which becomes independent of the ratio of the material properties, R. 

3. Interfacial stress intensity factor of a mode III edge crack between two bonded strips. 
In a similar manner to that used in the previous section, the conformal mapping 
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where 1 1h− < < , will map the region in Fig. 2(a) onto the region in Fig. 2(b). 
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Figure 2. (a) A bonded strip containing an edge crack a(1-h)  in length; (b) A bonded semicircle containing an edge crack  

a in length. 

The complex function ( )2ω′Λ  can be expressed in terms of the complex variable 3ω  in the 

3ω -plane as 
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Equation (11) should be applied to Eq. (12), along with the following relationships: 
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(13) 
where ξ  and ς  are the respective loading angles applied to materials 1 and 2 in the problem 

of Fig. 2(a), 2 2
1 1a dρ = + , 2 2

2 2a dρ = + , and 1d  and 2d  are vertical distances from the 

respective loading points to the interface. 
Thus, the interfacial SIF in the problem of Fig. 2(a) can be derived as 
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where i=1, 2. 
For the case with 0h = , the SIF reduces to 
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(17) 
For the case with ξ ς=  (the same loading angles), the SIF reduces to 
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h
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where A1 and B1 refer to Eq. (16). Similarly, the SIF is independent of the ratio of the 
material properties. 
For the case with R=1 (the single material case), the SIF reduces to 
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where A1, B1, A2, and B2 refer to Eq. (16). 

4. Case study. As shown in Fig. 3, two cases will be discussed in this section based on the 
solutions obtained above. Cases 1 and 2 are the interfacial edge-cracked problems of two 
bonded semicircles and two bonded strips. The SIF solutions for the respective cases are 
obtained from Eqs. (7) and (14) with the given conditions. 
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Figure 3. The case study: (a) Case 1 (bonded semicircles); (b) Case 2 (bonded strips). 

4.1 Case 1 – the interfacial edge-cracked problem of two bonded semicircles. For 
h=±0.5, and R=0.5 and 1.5, the dimensionless SIF (FIII=KIII/Fa1/2) distributions, with 0≤γ1≤π 
and 0≤γ2≤π, are listed in Table 1. The table shows that at h=0.5, γ1 is more sensitive than γ2 
to the SIF with R=0.5, while the opposite is true for the SIF with R=1.5. At h=-0.5, the small 
loading angles are sensitive to the SIF. These results indicate that the loads on the softer 
material dominates the SIF for the case with a shorter crack length (h=0.5) and the loads 
close to the crack tip dominates the SIF for the case with a longer crack length (h=-0.5). In 
addition, the maximum and minimum SIFs occur at the loading angles of both π and 0. 
Given γ1=π/2 and γ2=3π/4, the dimensionless SIF versus h is plotted in Fig. 4(a), showing 
that a decrease in h (an increase in the crack length) results in an increase in the SIF. Little 
SIF difference between the results of the three material combinations is obtained if the crack 
length is reduced close to zero or the crack cuts through most of the interface. Moreover, 
increasing R increases the SIF because γ2 is greater than γ1. 

4.2 Case 2 – the interfacial edge-cracked problem of two bonded strips. For h=±0.5 and 
R=0.5 and 1.5, the dimensionless SIF (FIII=KIII/Fa1/2) distributions, with 0≤x1(d1/a)≤1 and 
0≤x2(d2/a)≤1, are listed in Table 2. The table shows that within the applied loading distance, 
a decrease in x1 (or x2) results in an increase in the SIF while h=0.5 but a decrease in the SIF 
while h=-0.5. In addition, only a slight SIF variation is obtained for this case. Given x1=1/2 
and x2=3/4, the dimensionless SIF versus h is plotted in Fig. 4(b), showing that the results 
are close, especially for those of h<0. The results from h=1 to -1 show that the SIF first 
increases rapidly and then drops a little, and finally, it increases with the decrease in h (an 
increasing crack length). This indicates that there is a stable crack growth stage for this case 
if an edge crack initiates and extends along the interface. 
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R = 0.5 

  

R = 1.5 

  
Table 2. The dimensionless SIF distributions for Case 2 (x1=d1/a, x2=d2/a). 
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Table 1. The dimensionless SIF distributions for Case 1. 
 h = 0.5 h = -0.5 
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Figure 4. The dimensionless SIF versus h: (a) Case 1 with γ1=π/2 and γ2=3π/4; (b) Case 2 with x1=1/2 and x2=3/4. 

5. Conclusions. Two interfacial edge-cracked problems under out-of-plane shear are 
analyzed. Stress intensity factors for these problems are derived from the solutions obtained 
in Chen et al. (2009) by the conformal mapping method. Using the derived solutions, the 
SIF distributions for the respective cases are presented and discussed. The derived SIF 
solutions can be applied to the problems with various crack lengths and material ratios, and 
those can be used as the reference data for the related crack problems. 
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